toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gutierrez, L. url  doi
openurl 
  Title Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis Type Journal Article
  Year 2017 Publication (down) PLoS One Abbreviated Journal PLoS One  
  Volume 12 Issue 6 Pages e0179086  
  Keywords  
  Abstract Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4971  
Permanent link to this record
 

 
Author Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Liu, L.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ripoche, D.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wallach, D.; Wang, Z.; Wolf, J.; Zhu, Y.; Asseng, S. url  doi
openurl 
  Title The uncertainty of crop yield projections is reduced by improved temperature response functions Type Journal Article
  Year 2017 Publication (down) Nature Plants Abbreviated Journal Nature Plants  
  Volume 3 Issue Pages 17102  
  Keywords  
  Abstract Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections. Erratum: doi: 10.1038/nplants.2017.125  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5173  
Permanent link to this record
 

 
Author Tomozeiu, R.; Pasqui, M.; Quaresima, S. url  doi
openurl 
  Title Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021–2050 and 2071–2100 periods Type Journal Article
  Year 2017 Publication (down) Meteorology and Atmospheric Physics Abbreviated Journal Meteorology and Atmospheric Physics  
  Volume in press Issue Pages  
  Keywords  
  Abstract Climate change scenarios of seasonal minimum and maximum temperature over different Italian agricultural areas, during the periods 2021–2050 and 2071–2100 against 1961–1990, are assessed. The areas are those selected in the framework of the Agroscenari project and are represented by: Padano–Veneta plain, Marche, Beneventano, Destra Sele, Oristano, Puglia and Sicilia, all areas of prominent agricultural vocation with excellence productions. A statistical downscaling technique applied to ENSEMBLES global climate simulations, emission scenario A1B, is used to achieve this objective. The statistical scheme consists of a multivariate regression based on Canonical Correlation Analysis. The scheme is constructed using large-scale fields derived from ECMWF reanalysis and seasonal mean minimum, maximum temperature derived from national observed daily gridded data that cover 1959–2008 period. Once the most skillful model has been selected for each season and variable, this is then applied to GCMs of ENSEMBLES runs. The statistical downscaling method developed reveals good skill over the case studies of the present work, underlying the possibility to apply the scheme over whole Italian peninsula. In addition, the results emphasize that the temperature at 850 hPa is the best predictor for surface air temperature. The future projections show that an increase could be expected to occur under A1B scenario conditions in all seasons, both in minimum and maximum temperatures. The projected increases are about 2 °C during 2021–2050 and between 2.5 and 4.5 °C during 2071–2100, respect to 1961–1990. The spatial distribution of warming is projected to be quite uniform over the territory to the end of the century, while some spatial differences are noted over 2021–2050 period. For example, the increase in minimum temperature is projected to be slightly higher in areas from northern and central part than those situated in the southern part of Italian peninsula, during 2021–2050 period. The peak of changes is projected to appear during summer season, for both minimum and maximum temperature. The probability density function tends to shift to warmer values during both periods, with increases more intense during summer and to the end of the century, when the lower tail is projected to shift up to 3 °C and the upper tail up to 6 °C. All these projected changes have important impacts on viticulture, intensive fruit and tomatoes, some of the main agricultural systems analyzed in the Agroscenari project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4970  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S. url  doi
openurl 
  Title Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway Type Journal Article
  Year 2017 Publication (down) Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 155 Issue 03 Pages 361-377  
  Keywords  
  Abstract The effects of soil variability on regional crop yield under projected climate change are largely unknown. In Southeastern Norway, increased temperature and precipitation are projected for the mid-21st century. Crop simulation models in combination with scaling techniques can be used to determine the regional pattern of crop yield. In the present paper, the CSM-CROPSIM-CERES-Wheat model was applied to simulate regional spring wheat yield for Akershus and Østfold counties in Southeastern Norway. Prior to the simulations, parameters in the CSM-CROPSIM-CERES-Wheat model were calibrated for the spring wheat cvars Zebra, Demonstrant and Bjarne, using cultivar trial data from Southeastern Norway and site-specific weather and soil information. Weather input data for regional yield simulations represented the climate in 1961–1990 and projections of the climate in 2046–2065. The latter were based on four Global Climate Models and greenhouse gas emission scenario A1B in the IPCC 4th Assessment Report. Data on regional soil particle size distribution, water-holding characteristics and organic matter data were obtained from a database. To determine the simulated grain yield sensitivity to soil input, the number of soil profiles used to describe the soilscape in the region varied from 76 to 16, 5 and 1. The soils in the different descriptions were selected by arranging them into groups according to similarities in physical characteristics and taking the soil in each group occupying the largest area in the region to represent other soils in that group. The simulated grain yields were higher under all four projected future climate scenarios than the corresponding average yields in the baseline conditions. On average across the region, there were mostly non-significant differences in grain yield between the soil extrapolations for all cultivars and climate projections. However, for sub-regions grain yield varied by up to 20% between soil extrapolations. These results indicate how projected climate change could affect spring wheat yield given the assumed simulated conditions for a region with similar climate and soil conditions to many other cereal production regions in Northern Europe. The results also provide useful information about how soil input data could be handled in regional crop yield determinations under these conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5009  
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J. url  doi
openurl 
  Title Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain: IMPACT OF CLIMATE CHANGE ON OLIVE FLOWERING IN SOUTHERN SPAIN Type Journal Article
  Year 2017 Publication (down) International Journal of Climatology Abbreviated Journal Int. J. Climatol.  
  Volume Issue Pages 867  
  Keywords  
  Abstract Due to the severe increase projected in future temperatures and the great economic and social importance of olive growing for vast agricultural areas in the Mediterranean Basin, accurate climate change impact assessment on olive orchards is required. The aim of this study is to assess the flowering date and the impact of mean and extreme temperature events on olive flowering in southern Spain under baseline and future climate conditions. To that end, experimental data were obtained from ten olive genotypes: six well-known olive cultivars in the region, one cultivar, ‘Chiquitita’, obtained via conventional breeding, and three wild olives from the Canary Islands. A site-specific model calibration was conducted resulting in satisfactory performance with an average error of 2 days for flowering date estimation under baseline and future climate conditions, and a RMSE equal to 5.5 days in the validation process. The outputs from 12 regional climate models from the ENSEMBLES European project with a bias correction in temperature and precipitation were used. Results showed an advance in the olive flowering dates of about 17 days at the end of the 21st century compared with the baseline period (1981–2010), and an increase in the frequency of extreme events around the flowering period. A spatial analysis of results identified the areas in southern Spain that are most vulnerable to climate change impact caused by the lack of chilling hours accumulation (areas located on the Atlantic coast and the south-eastern coast) and by the occurrence of high temperatures during the flowering period (areas located in the north and north-eastern areas of the Andalusian region).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-8418 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4994  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: