|   | 
Details
   web
Records
Author Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M.
Title Impact of climate change on agro-climatic indicators and agricultural lands in the Transylvanian Plain between 2008-2014 Type Journal Article
Year 2017 Publication Carpathian Journal of Earth and Environmental Sciences Abbreviated Journal Carpathian Journal of Earth and Environmental Sciences
Volume 12 Issue 1 Pages 23-34
Keywords climate change; adaptation technologies; Transylvanian Plain
Abstract Integrated conservation and management of agricultural areas affected by the current global warming represents a priority at international level following the implementation of the principles of sustainable agriculture and adaptation measures. Transylvanian Plain (TP), with an area of 395,616 ha is of great agricultural importance for Romania, but with an afforestation degree of only 6.8% and numerous degradation phenomena of farmland, it has the lowest degree of sustainability to climate change. Monitoring of agro-climatic indicators and their evolution in between 2008-2014 and the analysis of the obtained data underlie the technological development of recommendations tailored to current favorable conditions for the main crops. Results obtained show that: the thermal regime of the soils in TP is of mesic type and the hydric regime is ustic; multiannual average of temperature in soil at 10 cm depth is 11.40ºC, respectively at 50 cm depth is 10.24ºC; the average yearly air temperature is 11.17ºC; multiannual average of soil moisture is 0.227 m3/m3; Multiannual average value of precipitation is 466.52 mm. During the studied period, compared with data series available (1961-1990; 1901-2000), clear decrease of the average quantities of rainfall especially during critical periods for crops, and increases in average temperatures for the entire year can be noticed. Between June and August the highest temperature difference were recorded, differences of +3.09°C to +3.65°C. There is an increase phenomenon of drought and heat; determined indicators show that most values, 61.11%, are commensurate with a semiarid climate. Aggression peaks are in February-April, July, and October-November, and for the whole period, in 19.43% of the cases are favorable and very favorable conditions for triggering erosion. Recommended agro-technical measures to limit and counteract the effects of drought, as a climatic phenomenon with major risk to agriculture in TP, refer to: i) use of a biological material resistant to water stress and heat; ii) use of management practices favorable for accumulation of, conservation and the efficient use of water from rainfall; iii) operating a system of conservation agriculture based on soil protection and desertification avoidance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1842-4090; 1844-489x ISBN (up) Medium
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4984
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume Issue Pages in press
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN (up) Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4985
Permanent link to this record
 

 
Author Mittenzwei, K.; Persson, T.; Höglind, M.; Kværnø, S.
Title Combined effects of climate change and policy uncertainty on the agricultural sector in Norway Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 153 Issue Pages 118-126
Keywords Climate change; Norway; Agriculture; Policy uncertainty; Modelling; LINGRA; CSM-CERES-Wheat; DSSAT
Abstract Highlights • A framework to study climate and policy uncertainty in agriculture is presented. • Combining both sources of uncertainty has ambiguous effects on agriculture. • Uncertainty needs to be highlighted in modelling tools for policy analysis. Abstract Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weather-driven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN (up) Medium
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4986
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C.
Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 2 Pages 93
Keywords
Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN (up) Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4988
Permanent link to this record
 

 
Author Abdelrahman, H.; Cocozza, C.; Olk, D.C.; Ventrella, D.; Miano, T.
Title Carbohydrates and Amino Compounds as Short-Term Indicators of Soil Management: Soil Type Journal Article
Year 2017 Publication Clean Soil Air Water Abbreviated Journal Clean Soil Air Water
Volume 45 Issue 1 Pages 757
Keywords
Abstract The objective of this work was to evaluate the suitability of carbohydrates and amino compounds in soil and soil organic matter (SOM) fractions to depict the management-induced changes in soil over short-term course. Soil samples were collected from two experimental fields managed according to organic farming regulations and a sequential fractionation procedure was applied to separate the light fraction (LF), particulate organic matter (POM), and mobile humic acid (MHA). Contents of carbohydrates and amino compounds were determined in soil and correspondent SOM fractions. Over a 2-year course, carbohydrate contents decreased in the LF fraction while it increased noticeably in the POM and slightly in the MHA fractions leading into questioning whether decomposing materials get incorporated into older fractions. Amino N content constituted up to 30% of total soil N, with a major contribution of the humic fraction (MHA). Although the LF, POM, and MHA fractions showed the greatest amino N content after the compost-legumes combinations, the carbohydrate and amino N contents in the POM and MHA fractions of the unamended soil increased as large as the corresponding fertilized plots, underlining that conservative soil management results in accumulation of labile forms of soil C and N that consequently might build up soil fertility. The changes after different treatments suggest the suitability of carbohydrates and amino compounds as short-term indicators for soil management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1863-0650 ISBN (up) Medium article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4993
Permanent link to this record