|   | 
Details
   web
Records
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W.
Title Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages (up) 81-92
Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254
Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.
Address 2017-11-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5178
Permanent link to this record
 

 
Author Bai, H.; Tao, F.
Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 211 Issue Pages (up) 89-105
Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize
Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.
Address 2017-08-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5174
Permanent link to this record
 

 
Author Luo, K.; Tao, F.; Deng, X.; Moiwo, J.P.
Title Changes in potential evapotranspiration and surface runoff in 1981-2010 and the driving factors in Upper Heihe River Basin in Northwest China Type Journal Article
Year 2017 Publication Hydrological Processes Abbreviated Journal Hydrol. Process.
Volume 31 Issue 1 Pages (up) 90-103
Keywords driving factor; potential evaporation; surface runoff; SWAT model; Upper Heihe River Basin; SWAT Hydrologic Model; Pan Evaporation; Vegetation Model; Climate-Change; Water; Trends; Precipitation; Uncertainty; Variability; Generation
Abstract Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright (C) 2016 John Wiley & Sons, Ltd.
Address 2018-08-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-6087 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5207
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C.
Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 2 Pages (up) 93
Keywords
Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4988
Permanent link to this record
 

 
Author Reidsma, P.; Janssen, S.; Jansen, J.; van Ittersum, M.
Title On the development and use of farm models for policy impact assessment in the European Union – A review Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages (up) 111-125
Keywords
Abstract • Evidence use in EU Impact Assessment reports is limited. • Many scientific studies used farm models for assessment of policies in the EU. • Scientific challenges include understanding farmer decision-making and interactions. • Model codes and data should be published, including evaluation. • Stronger science-policy interaction is required. Farm models are potentially relevant tools for policy impact assessment. Governments and international organizations use impact assessment (IA) as an ex-ante policy process and procedure to evaluate impacts of policy options as part of the introduction of new policies. IA is increasingly used. This paper reviews both the use of farm models in such policy IAs in the European Commission, and the development and use of farm models for policy IA by the scientific community over the past decade. A systematic review was performed, based on 202 studies from the period 2007–2015 and results were discussed in a science-policy workshop. Based on the literature review and the workshop, this paper describes progress in the development of farm models, challenges in their use in policy processes and a research and cooperation agenda. We conclude that main issues for a research agenda include: 1) better understanding of farmer decision-making and effects of the social milieu, with increased focus on the interactions between farmers and other actors, the link to the value chain, and farm structural change; 2) thorough and consistent model evaluation and model comparison, with increased attention for model sensitivity and uncertainty, and 3) the organization of a network of farm modellers. In addition, the agenda for science-policy cooperation emphasizes the need for: 4) synthesizing research evidence into systematic reviews as an institutional element in the existing science-policy-interfaces for agricultural systems, 5) improved and timely data collection, allowing to assess heterogeneity in farm objectives, management and indicators, and 6) stronger science-policy interaction, moving from a research-driven to a user-driven approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5179
Permanent link to this record