toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Stevanović, M.; Popp, A.; Bodirsky, B.L.; Humpenöder, F.; Müller, C.; Weindl, I.; Dietrich, J.P.; Lotze-Campen, H.; Kreidenweis, U.; Rolinski, S.; Biewald, A.; Wang, X. url  doi
openurl 
  Title Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices Type Journal Article
  Year 2017 Publication Environmental Science and Technology Abbreviated Journal Environmental Science and Technology  
  Volume 51 Issue 1 Pages 365-374  
  Keywords  
  Abstract The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5007  
Permanent link to this record
 

 
Author (up) Tao, F.; Roetter, R.P.; Palosuo, T.; Diaz-Ambrona, C.G.H.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Schulman, A.H. doi  openurl
  Title Designing future barley ideotypes using a crop model ensemble Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 144-162  
  Keywords Water-Use Efficiency; Climate-Change; Nitrogen Dynamics; Systems; Simulation; Wheat Cultivars; Grain Weight; Yield; Growth; Fertilization; Adaptation; Adaptation; Breeding; Climate change; Crop simulation models; Impact; Genotype; Genetic traits  
  Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley (Hordeum vulgare L) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, Sirius Quality, and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-01-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4935  
Permanent link to this record
 

 
Author (up) Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Roetter, R.P. doi  openurl
  Title Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2017 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 239 Issue Pages 1-14  
  Keywords Agriculture, Climate change, Crop yield, Impact and adaptation, Heat stress, Phenology; Climate-Change; Winter-Wheat; North China; Triticum-Aestivum; Crop; Production; Grain-Growth; Impacts; Trends; Heat; Management  
  Abstract Our understanding of climate impacts and adaptations on crop growth and productivity can be accelerated by analyzing historical data over the past few decades. We used crop trial and climate data from 1981 to 2009 at 34 national agro-meteorological stations in the Huang-Huai-Hai Plain (HHHP) of China to investigate the impacts of climate factors during different growth stages on the growth and yields of winter wheat, accounting for the adaptations such as shifts in sowing dates, cultivars, and agronomic management. Maximum (T-max) and minimum temperature (T-min) during the growth period of winter wheat increased significantly, by 0.4 and 0.6 degrees C/decade, respectively, from 1981 to 2009, while solar radiation decreased significantly by 0.2 MJ/m(2)/day and precipitation did not change significantly. The trends in climate shifted wheat phenology significantly at 21 stations and affected wheat yields significantly at five stations. The impacts of T-max and T-min differed in different growth stages of winter wheat. Across the stations, during 1981-2009, wheat yields increased on average by 14.5% with increasing trends in T-min over the whole growth period, which reduced frost damage, however, decreased by 3.0% with the decreasing trends in solar radiation. Trends in Tmax and precipitation had comparatively smaller impacts on wheat yields. From 1981 to 2009, climate trends were associated with a <= 30% (or <= 1.0% per year) wheat yield increase at 23 stations in eastern and southern parts of HHHP; however with a <= 30% (or <= 1.0% per year) reduction at 11 other stations, mainly in western part of HHHP. We also found that wheat reproductive growth duration increased due to shifts in cultivars and flowering date, and the duration was significantly and positively correlated with wheat yield. This study highlights the different impacts of T-max and T-min in different growth stages of winter wheat, as well as the importance of management (e.g. shift of sowing date) and cultivars shift in adapting to climate change in the major wheat production region. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-06-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4962  
Permanent link to this record
 

 
Author (up) Tomozeiu, R.; Pasqui, M.; Quaresima, S. url  doi
openurl 
  Title Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021–2050 and 2071–2100 periods Type Journal Article
  Year 2017 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorology and Atmospheric Physics  
  Volume in press Issue Pages  
  Keywords  
  Abstract Climate change scenarios of seasonal minimum and maximum temperature over different Italian agricultural areas, during the periods 2021–2050 and 2071–2100 against 1961–1990, are assessed. The areas are those selected in the framework of the Agroscenari project and are represented by: Padano–Veneta plain, Marche, Beneventano, Destra Sele, Oristano, Puglia and Sicilia, all areas of prominent agricultural vocation with excellence productions. A statistical downscaling technique applied to ENSEMBLES global climate simulations, emission scenario A1B, is used to achieve this objective. The statistical scheme consists of a multivariate regression based on Canonical Correlation Analysis. The scheme is constructed using large-scale fields derived from ECMWF reanalysis and seasonal mean minimum, maximum temperature derived from national observed daily gridded data that cover 1959–2008 period. Once the most skillful model has been selected for each season and variable, this is then applied to GCMs of ENSEMBLES runs. The statistical downscaling method developed reveals good skill over the case studies of the present work, underlying the possibility to apply the scheme over whole Italian peninsula. In addition, the results emphasize that the temperature at 850 hPa is the best predictor for surface air temperature. The future projections show that an increase could be expected to occur under A1B scenario conditions in all seasons, both in minimum and maximum temperatures. The projected increases are about 2 °C during 2021–2050 and between 2.5 and 4.5 °C during 2071–2100, respect to 1961–1990. The spatial distribution of warming is projected to be quite uniform over the territory to the end of the century, while some spatial differences are noted over 2021–2050 period. For example, the increase in minimum temperature is projected to be slightly higher in areas from northern and central part than those situated in the southern part of Italian peninsula, during 2021–2050 period. The peak of changes is projected to appear during summer season, for both minimum and maximum temperature. The probability density function tends to shift to warmer values during both periods, with increases more intense during summer and to the end of the century, when the lower tail is projected to shift up to 3 °C and the upper tail up to 6 °C. All these projected changes have important impacts on viticulture, intensive fruit and tomatoes, some of the main agricultural systems analyzed in the Agroscenari project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4970  
Permanent link to this record
 

 
Author (up) Topp, K.; Eory, V.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; Del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.; Lauwers, L.; Özkan Gülzari, Ş.; Rolinski, S.; Ruiz Ramos, M.; Sandars, D.L.; Sándor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Weindl, I.; Kipling, R.P. url  openurl
  Title Modelling climate change adaptation in European agriculture: Definitions and Current Modelling Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L2.3.2-D  
  Keywords  
  Abstract Confidential content, in preparation for a peer-reviewed publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4959  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: