|   | 
Details
   web
Records
Author Sandhu, H.; Wratten, S.D.; Porter, J.R.; Costanza, R.; Pretty, J.; Reganold, J.P.
Title Mainstreaming ecosystem services into future farming solutions Type Journal Article
Year 2016 Publication The Solutions Journal Abbreviated Journal The Solutions Journal
Volume 7 Issue 2 Pages 40-47
Keywords
Abstract Agriculture has made remarkable advances in fulfilling the food and nutritional requirement of expanding human numbers worldwide. There are several sustainable farming systems that contribute to overall biodiversity conservation and associated ecosystem services. Yet agricultural practices that have come to predominate since the second half of the 20th century have led to the overuse of fossil fuel-based inputs, unsustainable exploitation of natural resources, and loss of biodiversity. These outcomes also have high costs to human health and the environment. Continuing with largely energy-intense, wasteful, polluting, and unsustainable agriculture is no longer a viable option for future world food security and human well-being. There is an urgent need for forms of agricultural production that improve natural capital and ecosystem services (ES) in food systems worldwide. Mainstreaming ES into future agriculture requires protocols to replace some of the nonrenewable resources (e.g. fossil fuel-based pesticides and fertilizers) with renewable resources (ES such as biological control of insect pests or nitrogen fixation by legumes). The protocols presented here have been tested in different agricultural systems that enable farmland to simultaneously provide food and a range of ecosystem services. Recent research demonstrates that managed systems with these protocols exhibit higher economic value of ecosystem services. Thus, there is need to support the deployment of these protocols through various policy mechanisms for the long-term sustainability of agriculture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4759
Permanent link to this record
 

 
Author Sinabell, F.
Title Wirtschaftliche Herausforderungen für die Landwirtschaft Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume 5 Issue Pages 11-13
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Irdning-Donnersbachtal Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Umweltökologisches Symposium. Landwirtschaft 2030 - Auswirkungen auf Boden, Wasser und Luft, 5. – 6. April 2016, Irdning-Donnersbachtal
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5013
Permanent link to this record
 

 
Author van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J.
Title Correction: Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation Type Miscellaneous
Year 2016 Publication PLoS One Abbreviated Journal PLoS One
Volume 11(12) Issue 12 Pages e0168052
Keywords
Abstract [This corrects the article DOI: 10.1371/journal.pone.0161362.].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5020
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.
Title The impact of high-end climate change on agricultural welfare Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 2 Issue 8 Pages e1501452
Keywords ftnotmacsur
Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5003
Permanent link to this record
 

 
Author Mínguez, M.I.
Title Agriculture in Spain and the climate change issue Type Report
Year 2016 Publication Watch Letter Abbreviated Journal Watch Lett.
Volume 37 Issue Pages
Keywords ftnotmacsur
Abstract Climate change awareness is pushing research and innovation in agriculture. Studies are booming on phenology and heat stress physiology – in parallel with improvement of their simulation in crop models- water use, irrigation requirements and improvement – be it deficit, strategic or precision irrigation-, cereal grain quality, and pest and disease evolution; large international and European research projects are working on these and mapping new areas for cultivation or species/cultivar changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor International Center for Advanced Mediterranean Agronomic Studies CIHEAM Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 4881
Permanent link to this record