toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. url  doi
openurl 
  Title Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 166-178  
  Keywords No tillage; Minimum tillage; Silty-clay soil; Yield stability; Recursive partitioning analysis; Rainfed cropping systems; northern Great-Plains; clay loam soil; nitrogen-fertilization; conventional tillage; winter-wheat; growth; quality; rotation; crops; water  
  Abstract Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4722  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 80 Issue Pages 100-112  
  Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation  
  Abstract We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4724  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F. url  doi
openurl 
  Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 11 Issue 4 Pages e0151782  
  Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather  
  Abstract We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4725  
Permanent link to this record
 

 
Author Ebrahimi, E.; Manschadi, A.M.; Neugschwandtner, R.W.; Eitzinger, J.; Thaler, S.; Kaul, H.-P. url  doi
openurl 
  Title Assessing the impact of climate change on crop management in winter wheat – a case study for Eastern Austria Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 07 Pages 1153-1170  
  Keywords  
  Abstract Climate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4723  
Permanent link to this record
 

 
Author Brylińska, M.; Sobkowiak, S.; Stefańczyk, E.; Śliwka, J. url  doi
openurl 
  Title Potato cultivation system affects population structure of Phytophthora infestans Type Journal Article
  Year 2016 Publication Fungal Ecology Abbreviated Journal Fungal Ecology  
  Volume 20 Issue Pages 132-143  
  Keywords SSR; Population genetic structure; Late blight; Potato; late blight resistance; mating-type; microsatellite markers; phenotypic diversity; sexual reproduction; genotypic diversity; nordic countries; severe outbreaks; sarpo mira; pathogenicity  
  Abstract Phytophthora infestans is one of the most destructive potato pathogens. Many factors influence the population structure of P. infestans, including migration, climate and type of potato cultivation. Here, we analyse 365 P. infestans isolates collected from three regions of Poland over three years. We determined mating type, mitochondrial haplotype, resistance to metalaxyl, virulence and polymorphism at 14 simple sequence repeat (SSR) loci. Analysis of SSR markers showed high genetic diversity associated with this population. Model-based structure analysis grouped 299 unique genotypes into four main clusters. The P. infestans isolates collected from the Mlochow region, which has the most intensive level of potato cultivation, formed a distinct cluster, indicating a strong effect of the cultivation system on pathogen population structure. Three clusters contained isolates with frequent presence of three alleles at one locus, which may affect their capacity for sexual reproduction and preserve groups of fit genotypes that propagate asexually. (C) 2016 Elsevier Ltd and The British Mycological Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5048 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4720  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: