toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bindi, M.; Palosuo, T.; Trnka, M.; Semenov, M.A. url  doi
openurl 
  Title Modelling climate change impacts on crop production for food security INTRODUCTION Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 3-5  
  Keywords Crop production; Climate change impact and adaptation assessments; Upscaling; Model ensembles  
  Abstract Process-based crop models that synthesise the latest scientific understanding of biophysical processes are currently the primary scientific tools available to assess potential impacts of climate change on crop production. Important obstacles are still present, however, and must be overcome for improving crop modelling application in integrated assessments of risk, of sustainability and of crop-production resilience in the face of climate change (e.g. uncertainty analysis, model integration, etc.). The research networks MACSUR and AGMIP organised the CropM International Symposium and Workshop in Oslo, on 10-12 February 2014, and present this CR Special, discussing the state-of-the-art-as well as future perspectives-of crop modelling applications in climate change risk assessment, including the challenges of integrated assessments for the agricultural sector.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4785  
Permanent link to this record
 

 
Author (up) Bodin, P. url  openurl
  Title Assessing modelling approaches for simulating the effect of high temperature stress on yield Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-7  
  Keywords  
  Abstract High temperature events can have a large negative effect on crop yields, and the effects of these events are strongly dependent on not only the maximum temperature but also on the length and timing of these heat stress events. In future climate the likelihood of these types of events are expected to increase and thus make it crucial to be able to correctly assess not only the effect of changes in mean temperature but also the effect of changes in climate extremes. Crop models are often employed to predict yield responses to a changing climate, and traditionally they have not included the effect of heat stress events. In recent years more and more models have come to include the effect of high temperature stress on crop yield.  Here we implement three of these approaches (APSIM, GAEZ and CERES-Wheat) into the Crop-DGVM: LPJ-GUESS and results from an initial sensitivity analysis are presented. Results show a large difference in year to year variability in simulated yield for the different approaches, and also on differences in sensitivity in relation to temperature change. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2122  
Permanent link to this record
 

 
Author (up) Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Global Food Demand Scenarios for the 21st Century Type Journal Article
  Year 2015 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 10 Issue 11 Pages e0139201  
  Keywords  
  Abstract Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4997  
Permanent link to this record
 

 
Author (up) Boeckx, T.; Winters, A.L.; Webb, K.J.; Kingston-Smith, A.H. doi  openurl
  Title Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3571-3579  
  Keywords Catechol Oxidase/*metabolism; Cell Compartmentation; Chloroplasts/*enzymology; Environment; Photosynthesis; Plant Leaves/*enzymology; Abiotic stress; polyphenol oxidase; secondary metabolism.  
  Abstract Polyphenol oxidase (PPO) catalyses the oxidation of monophenols and/or o-diphenols to o-quinones with the concomitant reduction of oxygen to water which results in protein complexing and the formation of brown melanin pigments. The most frequently suggested role for PPO in plants has been in defence against herbivores and pathogens, based on the physical separation of the chloroplast-localized enzyme from the vacuole-localized substrates. The o-quinone-protein complexes, formed as a consequence of cell damage, may reduce the nutritional value of the tissue and thereby reduce predation but can also participate in the formation of structural barriers against invading pathogens. However, since a sufficient level of compartmentation-based regulation could be accomplished if PPO was targeted to the cytosol, the benefit derived by some plant species in having PPO present in the chloroplast lumen remains an intriguing question. So is there more to the chloroplastic location of PPO? An interaction between PPO activity and photosynthesis has been proposed on more than one occasion but, to date, evidence either for or against direct involvement has been equivocal, and the lack of identified chloroplastic substrates remains an issue. Similarly, PPO has been suggested to have both pro- and anti-oxidant functions. Nevertheless, several independent lines of evidence suggest that PPO responds to environmental conditions and could be involved in the response of plants to abiotic stress. This review highlights our current understanding of the in vivo functions of PPO and considers the potential opportunities it presents for exploitation to increase stress tolerance in food crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4552  
Permanent link to this record
 

 
Author (up) Bojar, W. url  openurl
  Title Methods to limit risks in agriculture in the era of climate change Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-8  
  Keywords  
  Abstract Nowadays, you can forecast that in twenty-first century a probability of drought risk occurrence, a one of the threatening a type of risk in agriculture, will reach a level between 66 and 90 per cent [IPCC 2001].The beginning of the twenty-first century is a time to seek new methods of risk management in agriculture. This is confirmed by the reports and surveys carried out in many research centres, as well as commissioned by public authorities [Xu et al. 2008]. Currently, you can observe the growing importance of the issue of risk in agriculture due to the worsening climate change, changes in the Common Agricultural Policy, the progressive liberalization of food trade on a global scale (less market intervention, increased price volatility and fluctuations in food supply and demand) and associated with those phenomena increase market risk [Jerzak 2008]. Demographic boom, growth in epidemics and diseases or changes in models of consumer behaviour as a result of today’s food trends healthy diet have an impact on food security. It is of interest to large research teams in Europe, just as the above risk factors affect the imbalance of global supply and demand for food in the long term. The Stern [Stern 2006] and report the Foundation for the Development of Polish Agriculture – FDPA) [Report FDPA 2008] and the communications of the European Commission show that in agriculture a lack of system solutions for the management of various risks and set of management instruments it is inadequate to the current situation of the sector.Analyzing historical data, one can conclude that in Poland more often we have to deal with losses caused by deficiency of precipitation than the excess [Mizak et al. 2013]. Droughts in Poland are most common when during the growing season flows very warm and dry air. In 2008, the area of arable land, determined in accordance with the applicable System Monitoring Agricultural Drought criterion of a 20 percent reduction in crop yields covered more than 8.1 million hectares, which accounted for 54% of arable land in Poland [Mizak et al. 2011]. Appropriate agricultural policy and trade policy should ensure sufficient food for the rapidly growing global population under mentioned above extreme natural events circumstances.Research centers in many EU countries and beyond should create appropriate models, tools and techniques in order to solve signaled above specific problems at farms, regions, countries and groups of countries in order to reduce the risks associated with food production [Bojar et al. 2012]. Such models were created as part of the research carried out in the Kujawy & Pomorze region where their results show the possibility of predicting the effects of climate change in the long term [Bojar et al., 2013, Zarski et al. 2014, Bojar at al., 2013].In particular, the series established the likelihood of a lack of rain in the forecast for the years 2030 and 2050 at a certain level and so the series 7, 8, 9 and 10 decades without rain likely to occur by 2030 amounts to 0.302, 0.109, 0.032 and 0.009, while for the year 2050 decades for a series of 7, 8, 9 and 10 respectively 0,543, 0,222, 0,070 and 0,019. It follows that, for a series of seven and eight decades without rain probability of such unfavorable phenomena is highest. Then established the relationship that the lack of rainfall will decrease yields of cereals in total, winter wheat, spring barley and potatoes. It results in the decline in land productivity in the years 2030 and 2050 will amount to cereals in total, winter wheat, spring barley and potatoes in the range of the maximum and minimum respectively 2.51 t/ha -3.67 t/ha, 3.10 t/ha- 4.10 t/ha, 1.63 t/ha – 3.33 t/ha and 15.30 t/ha- 21.00 t/ha [Bojar et al. 2013].The above-described conditions of risk of conducting agricultural activities indicate the need to develop methods of mitigating their negative effects.Mitigation of production and business risks in agriculture can be reached as follows:-        advancement models for defining dependencies between yields and whether in long-term to forecasts negative effects in farming productivity and profitability and this way minimize production and business risks,-        advancement of system of crop insurance,-        improvement of the infrastructure of small retention and simulation of the impact of various forms of cooperation of agricultural producers to increase the efficiency of their operations (joint purchasing of inputs, selling of agricultural products and/or use of machinery [Bojar 2008], work specialization versus production specialization [Bojar W., Drelichowski L., 1994.], common trainings, advertisements [Bojar, Kinder 2008, etc.]. Own preliminary research findings confirmed that approximately one third of the respondents jointly purchases and sales their products and forms of farmer cooperation with a joint market activities (transaction) in the Kujavian & Pomeranian region.For more detail and more precise explanation of dependency between yield and rainfalls some efforts will be focused on mathematical models describing agriculture and climate change problems that can be encountered in risk and safety analysis. We need to describe the uncertainties from incomplete knowledge, imperfect models or measurement errors.Because yields of crops depend strongly on rainfall there will be considered different models of rainfall. You will attempt of the generalization of model mixture the gamma distribution and a single point at zero distribution. This approach will be a continuation of the work that has been sent to print. To extend this application it could be performed calculations for the empirical data coming from the Kujavian & Pomeranian region for different crops.This work was co-financed by NCBiR, Contract no. FACCE JPI/04/2012 – P100 PARTNER No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: