|   | 
Details
   web
Records
Author (up) Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 204 Issue Pages 10-21
Keywords stics crop model; climate variability; lars-wg; yield prediction; log-normal distribution; convergence in law theorem; central limit theorem; weather generator; nitrogen balances; generic model; wheat; simulation; climate; stics; variability; skewness; efficiency
Abstract The development of methodologies for predicting crop yield, in real-time and in response to different agro-climatic conditions, could help to improve the farm management decision process by providing an analysis of expected yields in relation to the costs of investment in particular practices. Based on the use of crop models, this paper compares the ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on stochastically generated climatic data and the other on mean climate data. It was shown that the numerical experimental yield distribution could be considered as a log-normal distribution. This function is representative of the overall model behaviour. The lack of statistical differences between the numerical realisations and the logistic curve showed in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. In addition, the predictions obtained using both climatic inputs were found to be similar at the inter and intra-annual time-steps, with the root mean square and normalised deviation values below an acceptable level of 10% in 90% of the climatic situations. The predictive observed lead-times were also similar for both approaches. Given (i) the mathematical formulation of crop models, (ii) the applicability of the CLT and GLTC to the climatic inputs and model outputs, respectively, and (iii) the equivalence of the predictive abilities, it could be concluded that the two methodologies were equally valid in terms of yield prediction. These observations indicated that the Convergence in Law Theorem was applicable in this case study. For purely predictive purposes, the findings favoured an algorithm based on a mean climate approach, which needed far less time (by 300-fold) to run and converge on same predictive lead time than the stochastic approach. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4647
Permanent link to this record
 

 
Author (up) Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 16 Issue 4 Pages 361-384
Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios
Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4519
Permanent link to this record
 

 
Author (up) Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J.
Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
Year 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.
Volume 8 Issue 2 Pages 261-277
Keywords land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth
Abstract We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991-9603 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4559
Permanent link to this record
 

 
Author (up) Ewert, F.; al, E.
Title Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.3
Keywords
Abstract Problems related to food security and sustainable development are complex (Ericksenet al., 2009) and require consideration of biophysical, economic, political, and social factors, as well as their interactions, at the level of farms, regions, nations, and globally. While the solution to such societal problems may be largely political, there is a growing recognition of the need for science to provide sound information to decision-makers (Meinke et al., 2009). Achieving this, particularly in light of largely uncertain future climate and socio-economic changes, will necessitate integrated assessment approaches and appropriate integrated assessment modeling (IAM) tools to perform them. Recent (Ewertet al., 2009; van Ittersumet al., 2008) and ongoing (Rosenzweiget al., 2013) studies have tried to advance the integrated use of biophysical and economic models to represent better the complex interactions in agricultural systems that largely determine food supply and sustainable resource use. Nonetheless, the challenges for model integration across disciplines are substantial and range from methodological and technical details to an often still-weak conceptual basis on which to ground model integration (Ewertet al., 2009; Janssenet al., 2011). New generations of integrated assessment models based on well-understood, general relationships that are applicable to different agricultural systems across the world are still to be developed. Initial efforts are underway towards this advancement (Nelsonet al., 2014; Rosenzweiget al., 2013). Together with economic and climate models, crop models constitute an essential model group in IAM for large-area cropping systems climate change impact assessments. However, in addition to challenges associated with model integration, inadequate representation of many crops and crop management systems, as well as a lack of data for model initialization and calibration, limit the integration of crop models with climate and economic models (Ewertet al., 2014). A particular obstacle is the mismatch between the temporal and spatial scale of input/output variables required and delivered by the various models in the IAM model chain. Crop models are typically developed, tested, and calibrated for field-scale application (Booteet al., 2013; see also Part 1, Chapter 4 in this volume) and short time-series limited to one or few seasons. Although crop models are increasingly used for larger areas and longer time-periods (Bondeauet al., 2007; Deryng et al., 2011; Elliottet al., 2014) rigorous evaluation of such applications is pending. Among the different sources of uncertainty related to climate and soil data, model parameters, and structure, the uncertainty from methods used to scale-up crop models has received little attention, though recent evaluations indicate that upscaling of crop models for climate change impact assessment and the resulting errors and uncertainties deserve attention in order to advance crop modeling for climate change assessment (Ewertet al., 2014; R¨ otteret al., 2011). This reality is now reflected in the scientific agendas of new international research projects and programs such as the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweiget al., 2013) and MACSUR (MACSUR, 2014). In this chapter, progress in evaluation of scaling methods with their related uncertainties is reviewed. Specific emphasis is on examining the results of systematic studies recently established in AgMIP and MACSUR. Main features of the respective simulation studies are presented together with preliminary results. Insights from these studies are summarized and conclusions for further work are drawn. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2096
Permanent link to this record
 

 
Author (up) Ewert, F.; Hoffmann, H.; WP3 partners
Title Scaling up crop models for large area application Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Minneapolis (U.S.A.) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AgMIP and partners session at tripartite meetings (ASA-CSSA-SSA) at Minneapolis/USA, 2015-11-15 to 2015-11-17, Minneapolis
Notes Approved no
Call Number MA @ admin @ Serial 2426
Permanent link to this record