|   | 
Details
   web
Records
Author Köchy, M.; Hiederer, R.; Freibauer, A.
Title Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world Type Journal Article
Year 2015 Publication Soil Abbreviated Journal Soil
Volume 1 Issue Pages 351-365
Keywords
Abstract (down) •Soils contain 1062 Pg organic C (SOC) in 0-1 m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180 Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325 Pg SOC in 0-1m and ca. 3000 Pg, including deeper layers. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD’s bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of “wetland”, wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of “peatland”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-398x ISBN Medium Article
Area Expedition Conference
Notes LiveM, Hub, ft_macsur Approved no
Call Number MA @ admin @ Serial 4686
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Crop rotation modelling—A European model intercomparison Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue Pages 98-111
Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth
Abstract (down) • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4660
Permanent link to this record
 

 
Author Helming, J.
Title Implementation of the GTAP emission database in MAGNET; applications at European and global scales Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-21
Keywords
Abstract (down) World agriculture accounts for approximately 14% of all anthropogenic greenhouse gas. The share of  agriculture in total greenhouse gas emissions in the EU 28 increased from 8.7% in 2007 to about 10.3% in 2012. This includes methane and nitrous oxide emissions (European Environment Agency; Gugele et al., 2005; Beach et al., 2008). This increase is mainly explained by emission reductions in the rest of the economy.  Reductions in greenhouse gas emissions from agriculture  remained limited in the recent past.Options to reduce emissions in agriculture depends on macro-economic trends, including  international trade, agricultural policies, economic growth and consumption patterns. Global trade patterns will affect the regional distribution of agricultural production and the corresponding greenhouse gas emissions. The ability to introduce cost-effective measures to reduce greenhouse gas emissions are difficult to assess on a global scale. To tackle this problem there is a need for an interdisciplinary model instrument, in which both knowledge from macro and trade economy and natural sciences are included.The global equilibrium model MAGNET (Modular Applied GeNeral Equilibrium Tool) is developed by LEI and is an adaptation to the GTAP model (Woltjer & Kuiper, 2014). The main purpose of MAGNET is to provide a globally applied general equilibrium modelling framework, having the standard GTAP model as the core. MAGNET is complemented with the greenhouse gas emission dataset for the year 2007  that is made available by the GTAP consortium. The database includes emissions of carbon dioxide (CO2), nitrous dioxide (N2O) and methane (CH4).  N2O and CH4 emissions are especially relevant for the agricultural sector. The incorporation of these emissions in MAGNET enables us  to analyse current and  future greenhouse gas emissions under different policies and mitigation measures on a global scale, simultaneously taking into account interactions between the rest of the economy (by sectors) and across regions in the world.The GTAP emissions dataset estimates the share of European agriculture in total greenhouse gas emissions in the EU 28 to be about 11.5% in 2007. This deviates from total emission figures on Europe as presented by the European Environment Agency (EEA). The presentation will focus on some possible explanations for this difference. We will compare gaps in the dataset in agriculture and the rest of the economy. Next we will report the emission per EU member state in a 2020 baseline scenario. Here we will present percentage differences in changes in greenhouse gas emissions in 2020 vis-a-vis a baseyear in 2012. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2136
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 65 Issue Pages 10-17
Keywords climatic variability; stochastically generated weather; lars-wg; crop model; stics; nitrogen management; yield skewness; wheat yield; generic model; stics; management; variability; simulation; field; balances; impact
Abstract (down) Within the context of nitrogen (N) management, since 1950, with the rapid intensification of agriculture, farmers have often applied much larger fertiliser quantities than what was required to reach the yield potential. However, to prevent pollution of surface and groundwater induced by nitrates, The European Community launched The European Nitrates Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), with the aim of maintaining productivity and revenue for the country’s farmers, while reducing the environmental impact of excessive N application. A feasible approach for addressing climatic uncertainty lies in the use of crop models such as the one commonly known as STICS (simulateur multidisciplinaire pour les cultures standard). These models allow the impact on crops of the interaction between cropping systems and climatic records to be assessed. Comprehensive historical climatic records are rare, however, and therefore the yield distribution values obtained using such an approach can be discontinuous. In order to obtain better and more detailed yield distribution information, the use of a high number of stochastically generated climate time series was proposed, relying on the LARS-Weather Generator. The study focused on the interactions between varying N practices and climatic conditions. Historically and currently, Belgian farmers apply 180 kg N ha(-1), split into three equal fractions applied at the tillering, stem elongation and flag-leaf stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar practices where only the N rates applied at the flag-leaf stage were modified. Three types of farmer decision-making were analysed. The first related to the choice of N strategy for maximising yield, the second to obtaining the highest net revenue, and the third to reduce the environmental impact of potential N leaching, which carries the likelihood of taxation if inappropriate N rates are applied. The results showed reduced discontinuity in the yield distribution values thus obtained. In general, the modulation of N levels to accord with current farmer practices showed considerable asymmetry. In other words, these practices maximised the probability of achieving yields that were at least superior to the mean of the distribution values, thus reducing risk for the farmers. The practice based on applying the highest amounts (60-60-100 kg N ha(-1)) produced the best yield distribution results. When simple economical criteria were computed, the 60-60-80 kg N ha(-1) protocol was found to be optimal for 80-90% of the time. There were no statistical differences, however, between this practice and Belgian farmers’ current practice. When the taxation linked to a high level of potentially leachable N remaining in the soil after harvest was considered, this methodology clearly showed that, in 3 years out of 4,30 kg N ha(-1) could systematically be saved in comparison with the usual practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4646
Permanent link to this record
 

 
Author Kipling, R.; Topp, K.; Don, A.
Title The availability of carbon sequestration data in Europe Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 4 Issue Pages D-L1.4.2
Keywords
Abstract (down) With growing interest in the carbon sequestration potential of soils, experimental research and mapping projects have produced a wealth of datasets in this subject area. However, the coverage, quality and scope of available data vary widely across Europe, and the extent to which these data are accessible to experimental researchers and modellers is also highly variable. This report describes the availability of soil carbon data at the global and European levels, and reviews the on-line resources for accessing these data and meta-data. The extent to which researchers in the field share findings, based on institutional links in projects and on-line resources, is investigated. Future priorities for research and data accessibility relating to carbon sequestration are discussed. Many soil data resources are available online. Global and European soil data portals draw together much information from across Europe, and include the outcomes of major soil carbon mapping exercises. However, much project and national research is not accessible through these portals, and information on datasets derived from many research initiatives is difficult or impossible to locate online. Data on carbon sequestration (carbon fluxes in soils) specifically is more limited, although some such datasets are available through the general soil data resources described. Improved clarity in the presentation of research, and work to link more national and sub-national data to European and global online resources is required, with initiatives such as GSIF (Global Soil Information Facility) active in encouraging direct reporting of soil-related data at the global level. Priorities for research on SOC stocks include measuring carbon storage below the topsoil (>30cm), improving records of SOC in peatlands, improving the number and distribution of samples available for Europe-wide soil carbon mapping, and developing recognised methodological standards to allow easier comparisons of datasets. In the field of carbon sequestration research specifically, priorities include linking long-term SOC data to historical land use, developing understanding of the movement of SOC between top-soil and sub-soil and increasing dialogue between modellers and empirical researchers to improve dynamic modelling of SOC. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2214
Permanent link to this record