|   | 
Details
   web
Records
Author Semenov, M.A.; Stratonovitch, P.
Title (up) Adapting wheat for uncertain future Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference XIII ESA congress, Debrecen, Hungary, 2014-08-25 to 2014-08-29
Notes Approved no
Call Number MA @ admin @ Serial 2823
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.
Title (up) Adapting wheat in Europe for climate change Type Journal Article
Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.
Volume 59 Issue 3 Pages 245-256
Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype
Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-5210 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4543
Permanent link to this record
 

 
Author Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A.
Title (up) Adverse weather conditions for European wheat production will become more frequent with climate change Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 7 Pages 637-643
Keywords scenarios; increase; models; variability; responses; extremes; impacts; shifts
Abstract Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4545
Permanent link to this record
 

 
Author Müller, C., Elliott J
Title (up) AgMIP’s Global Gridded Crop Model Intercomparison Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12
Notes Approved no
Call Number MA @ admin @ Serial 2668
Permanent link to this record
 

 
Author Rötter, R.P.
Title (up) Agricultural Impacts: Robust uncertainty Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue Pages 251-252
Keywords climate-change
Abstract THIS PAPER AIMS: (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 x 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4501
Permanent link to this record