toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Roggero, P.P.; Pulina, A.; Baldoni, G.; Basso, B.; Berti, A.; Orlandini, S.; Danuso, F.; Pasqui, M.; Toderi, M.; Mazzoncini, M.; Grignani, C.; Tei, F.; Ventrella, D. url  openurl
  Title IC-FAR: Linking Long Term Observatories with Crop Systems Modeling For a better understanding of Climate Change Impact, and Adaptation Strategies for Italian Cropping Systems Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The IC-FAR project (2013-2016), funded by the Italian ministry of University, Research and Education, aims to use datasets from 16 Italian long term agronomic experiments (LTEs) to assess the reliability of different cropping system models over a range of Mediterranean environments and cropping systems. The selected models will be used for scenario and uncertainty analyses vs near-future climate change. The LTEs are located in seven sites: Turin, Padua, Bologna, Ancona, Pisa, Perugia, Foggia. The project’s is linked to international projects such as MACSUR, AgMIP, ANAEE, ESFRI and GRA, and has model developer teams as associate partners. IC-FAR is structured in five WPs. WP1 is focused on building a common dataset and sampling protocols.  The field data will be implemented in the WP2 to calibrate, validate and assess the performances of different models across Italian environments. An uncertainty analysis will be performed in relation to the model types, cropping system typologies and climate scenarios (WP3). WP4 and WP5 are focused on capacity building on modeling and on dissemination, including networking with other European LTE platforms (WP4), and to the project coordination (WP5). The next step of IC-FAR will be the design and realization of a special issue summarizing a selection of the most important results from the LTEs, that will be the starting point towards the full implementation of the data sharing policy of this project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume (down) 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5086  
Permanent link to this record
 

 
Author Rusu, T. url  openurl
  Title Impact of Climate Change on Crop Land and Technological Recommendations for the Main Crops in Transylvanian Plain, Romania Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The Transylvanian Plain (TP) is an important agricultural production area of Romania that is included among the areas with the lowest potential of adapting to climate changes in Europe. Thermal and hydric regime monitoring is necessary to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data regarding ground temperature at 3 depths (10, 30, 50 cm), humidity at a depth of 10 cm, air temperature (at 1 m) and precipitation. For agricultural crops, the periods of drought and extreme temperatures require specific measures of adaptation to climate changes. During the growing season of crops in the spring (April – October) in the southeastern, southern, and eastern escarpments, precipitation decreased by 43.8 mm, the air temperature increased by 0.37°C, and the ground temperature increased by 1.91°C at a depth of 10 cm, 2.22°C at a depth of 20 cm and 2.43°C at a depth of 30 cm compared with values recorded for the northern, northwestern or western escarpments. Water requirements were ensured within an optimal time frame for 58.8-62.1% of the spring row crop growth period, with irrigation being necessary to guarantee the optimum production potential. The biologically active temperature recorded in the TP demonstrates the need to renew the division of the crop areas reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume (down) 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5087  
Permanent link to this record
 

 
Author François, L.; Jacquemin, I.; Fontaine, C.; Minet, J.; Dury, M.; Tychon, B. url  openurl
  Title Implementing agricultural land-use in the CARAIB dynamic vegetation model Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract CARAIB (Dury et al., 2011) is a state-of-the-art dynamic vegetation model with various modules dealing with (i) soil hydrology, (ii) photosynthesis/stomatal regulation, (iii) carbon allocation and biomass growth, (iv) litter/soil carbon dynamics, (v) vegetation cover dynamics, (vi) seed dispersal, and (vii) vegetation fires. Climate and atmospheric CO2 are the primary inputs. The model calculates all major water and CO2/carbon fluxes and pools. It can be run with plant functional types or species (up to 100 different species) at various spatial scales, from the municipality to country or continental levels.   Within the VOTES project (Fontaine et al., 2013), the model has been improved to include crops and meadows, and some modules have been written to translate model outputs into quantitative indicators of ecosystem services (e.g., evaluate crop yield from net primary productivity or calculate soil erosion from runoff, slope, grown species and various soil attributes). The model was run over an area covering four municipalities in central Belgium, where land-use is dominated by crops, meadows, housing and some forests and was introduced in the model at the land parcel level. Simulations were also performed for the future. In these simulations, CARAIB was combined with the Aporia Agent-Based Model,  to project land-use changes up to 2050. This approach is currently extended within the MASC project (funded by Belgian Science Policy, BELSPO) to the whole Belgian territory (at 1 km2) and to Western Europe (at 20  km x 20 km).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume (down) 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5088  
Permanent link to this record
 

 
Author Mittenzwei, K. url  openurl
  Title Incorporating uncertainty in a deterministic agricultural sector model Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Climate-induced uncertainty in crop yields is introduced in the Norwegian sector model Jordmod. The model is comprised of a supply module in which profits for more than 300 regional farms are maximized and a market module which maximizes social welfare in the agricultural sector. In the supply module, farmers determine their plant decisions and crop input levels (N-fertilizer) subject to a discrete number of weather outcomes affecting crop yields. After that, a specific weather distribution is chosen determining crop yields. The resulting input-output mix at farm level makes up the supply side of the commodity markets which together with linear demand functions determine equilibrium levels. The procedure is repeated for each discrete weather outcome. Note that plant decisions and crop input levels remain the same for all weather outcomes as farmers face the same uncertainty during all repetitions, but crop yield will vary. Hence, equilibrium prices and quantities will vary as well allowing their representation as stochastic distributions. In a preliminary empirical application, the stochastic results are contrasted with the deterministic results based on the mean values of the weather outcomes. This comparison will shed light on the potential error made by neglecting uncertainty at the farm level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume (down) 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5089  
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J. url  openurl
  Title Integrated assessment of business crop productivity and profitability for use in food supply forecasting Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Climate change suggests long periods without rainfall will occur in the future quite often. Previous approach on dependence crop-yields from size of rain confirms the existence of a statistically significant relation. We built a model describing the amount of precipitation and taking into account periods of drought, using a mixture of gamma distribution and one point-distribution. Parameter estimators were constructed from rainfall data using the method of maximum likelihood. Long series of days or decades of drought allow to determine the probabilities of adverse developments in agriculture as the basis for forecasting crop yields in the future (years 2030, 2050). Forecasted yields can be used for assessment of productivity and profitability of some selected crops in Kujavian-Pomeranian region. Assumptions and parameters of large-scale spatial economic models will be applied to build up relevant solutions. Calculated with this approach output could be useful to expect decrease in agricultural output in the region. It will enable to shape effective agricultural policy to know how to balance food supply and demand through appropriate managing with stored food raw material and/or import/export policies. Used precipitation-yields dependencies method let verify earlier used methodology through comparison of obtained solutions concerning forecasted yields and closed to it uncertainty analysis.This work was co-financed by NCBiR, Contract no. FACCE JPI/04/2012 – P100 PARTNER  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume (down) 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5090  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: