|   | 
Details
   web
Records
Author Havlik, P.; Leclere, D.; Valin, H.; Herrero, M.; Schmid, E.; Obersteiner, M.
Title Effects of climate change on feed availability and the implications for the livestock sector Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Global mean surface temperature is projected to rise by 0.4-2.6°C until 2050, and the contrast in precipitations between wet and dry regions and wet and dry seasons will also increase according to the IPCC 5th Assessment Report (2013). The climate change will impact livestock in many ways going from heat stress through livestock diseases to feed quality and availability (Thornton et al., 2009). Recently, projected climate change impacts on crop and grassland productivity became available with high spatial resolution at global scale through the AgMIP and ISI-MIP projects. The objective of this paper is to investigate how climate change impacts on crops and grassland will influence livestock production globally and its distribution across regions. This analysis is carried out using the global partial equilibrium agricultural and forestry sector model GLOBIOM (Havlík et al., 2013). The model represents agricultural production at a spatial resolution going down to 5 x 5 minutes of arc. Crop and grassland productivities are estimated by means of biophysical process based models (EPIC and CENTURY) at this resolution for current and future climate. Livestock representation follows a simplified version of the Seré and Steinfeld (1996) production system classification. This approach recognizes differences in feed base and productivities between grazing and mixed crop-livestock production systems across different agro-ecological zones (arid, humid, temperate/highlands). Our study highlights that the differential impacts of climate change on crop and grassland productivity will influence the relative competitiveness of different livestock production systems. Maintaining livestock production in some regions will depend on their capacity to adapt. Institutional and physical infrastructure will be needed to facilitate these transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (down) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5076
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Wang, E.; Zhao, Z.; Ewert, F.
Title Effects of climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (down) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5077
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H.
Title Environmental impacts of grassland management and livestock production Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The potential of grasslands to sequester carbon and provide feed for livestock production depends on the one hand on climatic conditions but secondly on management and grazing pressure. Using a global vegetation model considering different management and grazing options, effects of livestock density on primary productivity can be assessed. It is expected that low animal densities enhance productivity whereas increasing grazing pressure may deteriorate grass plants. Thus, the optimal animal density depend on the specific primary production of the pasture and optimal grazing intensity. Using these optimal grass yields, the impacts of livestock production on resource use is assessed by applying the global land use model MAgPIE. This model integrates a detailed representation of the livestock sector and integrates socio-economic regional information with spatially explicit biophysical data. With scenario analysis we analyze the impact of livestock production on future deforestation and land use. Our results indicate that the reduction of animal derived calory demand has a huge potential to spare land for nature and reduce deforestation. On the supply side, feeding efficiency gains can help to decrease demand for land and overall biomass requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (down) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5078
Permanent link to this record
 

 
Author Zimmermann, A.
Title Exploring yield gaps in the EU, concept and data Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Agreeing that increased future global food demand will have to be met by production intensification rather than land use expansion (Hertel, 2011), scientists have moved to empirically analysing the causes for differences between potentially attainable yields and actually realized yields – the yield gap (Neumann et al., 2010). We aim at disentangling the effects of biophysical, economic and political impacts and farmers’ response to them on crop yields based on reviewing theoretical and empirical literature and some descriptive data analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (down) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5079
Permanent link to this record
 

 
Author Kässi, P.; Niskanen, O.; Känkänen, H.
Title Farm level approach to manage grass yield variation in changing climate in Jokioinen and St. Petersburg Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Cattle’s feeding is based on grass silage in Northern Europe, but grass growth is highly dependent on weather conditions. In farms decision making, grass area is usually determined by the variation of yield. To be adequate in every situation, the lowest expected yield level determines the cultivated area. Other way to manage the grass yield risk is to increase silage storage capacity over annual consumption. Variation of grass yield in climate data from years 1961-1990 was compared with 15 different climate scenario models simulating years 2046-2065. A model was developed for evaluating the inadequacy risk in terms of cultivated area and storing capacity. The cost of risk is presented and discussed. In northern Europe a typical farm has storage for roughage consumption of almost one year. In addition, there can be a buffer storage. The  extra storage is to be used before and during the harvest season. New harvest will be fed to animals only after the buffer empty. Shortage in the buffer storage is possible to be filled, when the yield exceeds the target level. For risk management, two alternative mechanisms are given: forage buffer and possibility to alter the field area. According to our results, there are no significant adverse effects in the cost of risk and implied farm profitability due to climate change. Selecting the risk management scenario of 30 % grass yield risk turned out to be the least cost solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (down) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5080
Permanent link to this record