|   | 
Details
   web
Records
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.
Title Adapting wheat in Europe for climate change Type Journal Article
Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.
Volume 59 Issue 3 Pages 245-256
Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype
Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-5210 ISBN Medium (down) Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4543
Permanent link to this record
 

 
Author Bulak, P.; Walkiewicz, A.; Brzezińska, M.
Title Plant growth regulators-assisted phytoextraction Type Journal Article
Year 2014 Publication Biologia Plantarum Abbreviated Journal Biol. Plant.
Volume 58 Issue 1 Pages 1-8
Keywords auxins; cytokinins; gibberelins; heavy metals; phytoremediation; pollutants; Zea-mays l.; heavy-metals; Pteris-vittata; organic-acids; molecular-mechanisms; contaminated soils; Sedum-alfredii; lead uptake; hyperaccumulation; phytoremediation
Abstract Plant growth regulators (PRG)-assisted phytoremediation is a technique that could enhance the yield of heavy metal accumulation in plant tissues. So far, a small number of experiments have helped identify three groups of plant hormones that may be useful for this purpose: auxins, cytokinins, and gibberellins. Studies have shown that these hormones positively affect the degree of accumulation of metallic impurities and improve the growth and stress resistance of plants. This review summarizes the present knowledge about PGRs’ impact on phytoextraction yield.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3134 ISBN Medium (down) Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4515
Permanent link to this record
 

 
Author Thornton, P.; Ewert, F.
Title Making the most of climate impacts ensembles (vol 4, pg 77, 2014) – Correction Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 3 Pages 166-166
Keywords
Abstract
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium (down) Letter
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4817
Permanent link to this record
 

 
Author Banse, M.; Brouwer, F.; Palatnik, R.R.; Sinabell, F.
Title The Economics of European Agriculture under Conditions of Climate Change (Editorial) Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue 3 Pages 131-132
Keywords
Abstract This Special Issue on “The Economics of European Agriculture under Conditions of Climate Change” brings together a selection of papers that contribute to the understanding of recent developments related to agriculture and climate change in four European coun- tries. The focus of the Special Issue is on quantitative modeling and empirical analyses. The papers presented here not only cover the heterogeneity of agriculture in Europe with case studies from the Mediterranean (Italy), central (Austria) and north-western Europe (Ireland and Scotland) but also give insights into the diversity of quantitative modeling approaches in agriculture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (down) Editorial material
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4763
Permanent link to this record
 

 
Author Müller, C.; Elliott, J.; Levermann, A.
Title Food security: Fertilizing hidden hunger Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 7 Pages 540-541
Keywords elevated CO2; human-nutrition; climate-change; carbon; face
Abstract Atmospheric CO2 fertilization may go some way to compensating the negative impact of climatic changes on crop yields, but it comes at the expense of a deterioration of the current nutritional value of food.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium (down) Editorial Material
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4537
Permanent link to this record