toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gallo, A.; Mereu, V.; Spano, D. url  openurl
  Title Projected climate change impact on wheat and maize in Italy Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Agriculture is one of the most important sectors for global economy. Its high vulnerability to climate conditions cause a serious concern for the consequence determined by the incoming climate changes. The increase in temperature and decrease in rainfall, projected for the next decades in the Mediterranean Basin, may cause a significant impact on crop development and production. In this contest, the assessment of the climate change impacts on crop growth and yield is necessary in order to identify the crops and areas more vulnerable and suggest adaptation strategies to cope with climate change. The use of crop simulation models, such as those implemented in DSSAT-CSM (Decision Support System for Agrotechnology Transfer – Cropping System Model) software, version 4.5., is the most common approach for the assessment of climate change impacts on crop development and yields. These models are often used at field scale. However, recent studies have been carried out at both regional and continental scale. In this work, CSM-CERES-Wheat and CSM-CERES-Maize crop models, parameterized at Italian scale for different varieties of durum wheat, common wheat and maize, were applied to assess climate change impacts on crop phenology and productivity. Dynamically downscaled climate data, using by the Regional Climate Model COSMO-CLM, and RCP 4.5 and 8.5 scenarios were used for impact assessment. Moreover, some adaptation strategies were evaluated. Results, analyzed at regional level, will be discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5116  
Permanent link to this record
 

 
Author (up) García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J. doi  openurl
  Title Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 124 Issue 1-2 Pages 147-162  
  Keywords winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth  
  Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4622  
Permanent link to this record
 

 
Author (up) Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Determination of biomass accumulation in mixed belts of Salix, Corylus and Alnus species in combined food and energy production system Type Journal Article
  Year 2014 Publication Biomass and Bioenergy Abbreviated Journal Biomass and Bioenergy  
  Volume 63 Issue Pages 86-91  
  Keywords allometric equation; destructive and non-destructive method; stool and biomass yield; bio-energy belts; food and fodder crops; short rotation woody crops; short-rotation forestry; willow; plantations; sweden; coppice; equations; growth; poplar; trees; yield  
  Abstract Given the energetic, demographic and the climatic challenges faced today, we designed a combined food and energy (CFE) production system integrating food, fodder and mixed belts of Salix, Alnus and Corylus sp. as bioenergy belts. The objective was to assess the shoot dry weight-stem diameter allometric relationship based on stem diameter at 10 (SD10) and 55 cm (SD55) from the shoot base in the mixed bioenergy belts. Allometric relations based on SD10 and SD55 explained 90-96% and 90-98% of the variation in shoot dry weights respectively with no differences between the destructive and the non-destructive methods. The individual stool yields varied widely among the species and within willow species with biomass yield range of 37.60-92.00 oven dry tons (ODT) ha (1) in 4-year growth cycle. The biomass yield of the bioenergy belt, predicted by allometric relations was 48.84 ODT ha 1 in 4-year growth cycle corresponding to 12.21 ODT ha (1) year (1). The relatively high biomass yield is attributed to the border effects and the ‘fertilizing effect’ of alder due to nitrogen fixation, benefitting other SWRC components. On termination of 4-year growth cycle, the bioenergy belts were harvested and the biomass yield recorded was 12.54 ODT ha (1) year (1), in close proximity to the biomass yield predicted by the allometric equations, lending confidence and robustness of the model for biomass yield determination in such integrated agro-ecosystem. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4624  
Permanent link to this record
 

 
Author (up) Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 10 Issue Pages 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
 

 
Author (up) Ghaley, B.B.; Porter, J.R.; Sandhu, H.S. url  doi
openurl 
  Title Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods Type Journal Article
  Year 2014 Publication International Journal of Biodiversity Science, Ecosystem Services & Management Abbreviated Journal International Journal of Biodiversity Science, Ecosystem Services & Management  
  Volume 10 Issue 3 Pages 177-186  
  Keywords ecosystem functions; litter decomposition; mineralisation; assessment methodologies; stoichiometry  
  Abstract Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii) stoichiometric imbalances need to be avoided between the supply and the demand of the nutrients to maintain the ES provision in terrestrial ecosystems and (iii) stoichiometric ratios can act as a management tool at a field, farm and at landscape level, to complement other compositional biodiversity and functional diversity approaches to ensure sustainable provision of ES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2151-3732 2151-3740 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4522  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: