toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Barnes, A.; Shrestha, S.; Thomson, S.; Toma, L.; Mathews, K.; Sutherland, L.A. url  openurl
  Title Comparing visions for CAP reforms post 2015: Farmer intentions and farm bio-economic modelling Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper illustrates the impacts of two of the potential CAP reform post 2015 scenarios using an optimising farm level model and compares results with farmers’ perception about the policy changes, captured in a farmer intentions survey. The model results suggest that beef farms suffer a loss in farm net margins under fully decoupled (up to -21%) as well as under partially decoupled scenario (up to -19%) compared to current historical single farm payments. The model also shows that farm respond by reducing the number of beef animals on farm by up to 5%. However, under a partial decoupled scenario, beef farms increase calf numbers by 15% to benefit from coupled calf payment. A survey of 1,400 beef producers with respect to their intentions toward 2020 was conducted in the Summer of 2013. A set of hypothetical payment scenarios was used to test self-reported response to a number of scenarios related to expanding and extensifying. These were compared with the modelling results and found a range of responses which could, we argue, be used for future calibration and ‘sense-checking’ of results within future modelling strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5066  
Permanent link to this record
 

 
Author (up) Barnes, A.; Shrestha, S.; Thomson, S.; Toma, L.; Mathews, K.; Sutherland, L.A. url  openurl
  Title Comparing visions for CAP reforms post 2015: Farmer intentions and farm bio-economic modelling Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages Sp3-2  
  Keywords  
  Abstract This paper illustrates the impacts of two of the potential CAP reform post 2015 scenarios using an optimising farm level model and compares results with farmers’ perception about the policy changes, captured in a farmer intentions survey. The model results suggest that beef farms suffer a loss in farm net margins under fully decoupled (up to -21%) as well as under partially decoupled scenario (up to -19%) compared to current historical single farm payments. The model also shows that farm respond by reducing the number of beef animals on farm by up to 5%. However, under a partial decoupled scenario, beef farms increase calf numbers by 15% to benefit from coupled calf payment. A survey of 1,400 beef producers with respect to their intentions toward 2020 was conducted in the Summer of 2013. A set of hypothetical payment scenarios was used to test self-reported response to a number of scenarios related to expanding and extensifying. These were compared with the modelling results and found a range of responses which could, we argue, be used for future calibration and ‘sense-checking’ of results within future modelling strategies. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2219  
Permanent link to this record
 

 
Author (up) Bartley, D. url  openurl
  Title Do modellers dream of electric sheep? – Practical to mathematical and back again Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Disease agents, whether viral, bacterial or parasitic, infecting grazing domestic animals represent a significant threat to livestock health and welfare and to food security, globally. In addition, inefficiency in production due to sub-clinical disease adds significantly to a farm’s environmental footprint. Projected climatic changes over the short-medium term have implications for livestock pests and pathogens, both directly and indirectly, and will result in changing disease patterns e.g. incidence, seasonality and geographic spread. An area where interdisciplinary collaboration is mutually beneficial, and essential in order to gain a better understanding of the interactions between climatic change, pathogen dissemination and livestock productivity is between ‘fundamental’ or ‘practical’ livestock researchers and modellers. To facilitate this collaboration, there needs to be a dialogue between both parties on the data depth, quality and format required to populate different models to ensure relevant and appropriate outputs. An example of where this type of collaboration has been used is work using an Intergovernmental Panel on Climate Change (IPCC)-compliant model (CPLANv2) to calculate greenhouse gases (GHG) associated with fattening lambs over five consecutive grazing seasons. The results demonstrated that effective control of sub-clinical/clinical parasitic gastroenteritis resulted in a ~10% reduction in GHG emissions/kg live weight gain (Kenyon et al., 2013).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5073  
Permanent link to this record
 

 
Author (up) Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; Basso, B.; Biernath, C.; Boogaard, H.; Conijn, S.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Gayler, S.; Grassini, P.; Hatfield, J.; Hoek, S.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.R.; Kersebaum, K.C.; Kim, S.-H.; Kumar, N.S.; Makowski, D.; Müller, C.; Nendel, C.; Priesack, E.; Pravia, M.V.; Sau, F.; Shcherbak, I.; Tao, F.; Teixeira, E.; Timlin, D.; Waha, K. doi  openurl
  Title How do various maize crop models vary in their responses to climate change factors Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 7 Pages 2301-2320  
  Keywords Carbon Dioxide/metabolism; *Climate Change; Crops, Agricultural/growth & development/metabolism; Geography; Models, Biological; Temperature; Water/*metabolism; Zea mays/*growth & development/*metabolism; AgMIP; [Co2]; climate; maize; model intercomparison; simulation; uncertainty  
  Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4510  
Permanent link to this record
 

 
Author (up) Baum, Z. openurl 
  Title The Economic Impact of Water Scarcity Under Diverse Water Qualities and Desalination Policies: The Case of Israel Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference TradeM International Workshop 2014 »Economics of integrated assessment approaches for agriculture and the food sector«, Hurdalsjøen, Norway, 2014-11-25 to 2014-11-27  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2302  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: