toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bojar, W.; Verburg, R.; Zarski, J.; Brouwer, F. url  openurl
  Title Circumstances of climatic changes impacts on agricultural production taking attention regional characteristics Type Report
  Year 2012 Publication Studies & Proceedings of Polish Association for Knowledge Management Abbreviated Journal  
  Volume 61 Issue Pages 29-44  
  Keywords (down) TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2066  
Permanent link to this record
 

 
Author Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. url  doi
openurl 
  Title Can farmers’ adaptation to climate change be explained by socio-economic household-level variables Type Journal Article
  Year 2012 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 22 Issue 1 Pages 223-235  
  Keywords (down) Sub-Saharan Africa; Tanzania; Adaptive capacity; Index; Vulnerability; Adaptation; adaptive capacity; environmental-change; south-africa; vulnerability; variability; resilience; tanzania; framework; drought; policy  
  Abstract A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4467  
Permanent link to this record
 

 
Author Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G. url  doi
openurl 
  Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
  Year 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 81 Issue Pages 1-10  
  Keywords (down) stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants  
  Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4797  
Permanent link to this record
 

 
Author Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Hu, C.; Hennings, V.; Schad, P.; Rogasik, J.; Zeitz, J.; Schlindwein, S.L.; Behrendt, A.; Helming, K.; Eulenstein, F. url  doi
openurl 
  Title A framework for assessing agricultural soil quality on a global scale Type Journal Article
  Year 2012 Publication Archives of Agronomy and Soil Science Abbreviated Journal Archives of Agronomy and Soil Science  
  Volume 58 Issue sup1 Pages S76-S82  
  Keywords (down) soil quality; indicators; muencheberg soil quality rating  
  Abstract This paper provides information about a novel approach of rating agricultural soil quality (SQ) and crop yield potentials consistently over a range of spatial scales. The Muencheberg Soil Quality Rating is an indicator-based straightforward overall assessment method of agricultural SQ. It is a framework covering aspects of soil texture, structure, topography and climate which is based on 8 basic indicators and more than 12 hazard indicators. Ratings are performed by visual methods of soil evaluation. A field manual is then used to provide ratings from tables based on indicator thresholds. Finally, overall rating scores are given, ranging from 0 (worst) to 100 (best) to characterise crop yield potentials. The current approach is valid for grassland and cropland. Field tests in several countries confirmed the practicability and reliability of the method. At field scale, soil structure is a crucial, management induced criterion of agricultural SQ. At the global scale, climate controlled hazard indicators of drought risk and soil thermal regime are crucial for SQ and crop yield potentials. Final rating scores are well correlated with crop yields. We conclude that this system could be evolved for ranking and controlling agricultural SQ on a global scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-0340 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4589  
Permanent link to this record
 

 
Author Sollitto, D.; De Benedetto, D.; Castrignanò, A.; Crescimanno, G.; Provenzano, G.; Ventrella, D. url  doi
openurl 
  Title Spatial data fusion and analysis for soil characterization: a case study in a coastal basin of south-western Sicily (southern Italy) Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 4  
  Keywords (down) salinization risk; soil retention curve; geostatistics; factor Kriging; intrinsic random funciton  
  Abstract Salinization is one of the most serious problems confronting sustainable agriculture in semi-arid and arid regions. Accurate mapping of soil salinization and the associated risk represent a fundamental step in planning agricultural and remediation activities. Geostatistical analysis is very useful for soil quality assessment because it makes it possible to determine the spatial relationships between selected variables and to produce synthetic maps of spatial variation. The main objective of this paper was to map the soil salinization risk in the Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy), using multivariate geostatistical techniques and a set of topographical, physical and soil hydraulic properties. Elevation data were collected from existing topographic maps and analysed preliminarily to improve the estimate precision of sparsely sampled primary variables. For interpolation multi-collocated cokriging was applied to the dataset, including textural and hydraulic properties and electrical conductivity measurements carried out on 128 collected soil samples, using elevation data as auxiliary variable. Spatial dependence among elevation and physical soil properties was explored with factorial kriging analysis (FKA) that could isolate and display the sources of variation acting at different spatial scales. FKA isolated significant regionalised factors which give a concise description of the complex soil physical variability at the different selected spatial scales. These factors mapped, allowed the delineation of zones at different salinisation risk to be managed separately to control and prevent salinization risk. The proposed methodology could be a valid support for land use and soil remediation planning at regional scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: