toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maggio, A.; De Pascale, S.; Orsini, F.; Barbieri, G. openurl 
  Title Addressing cultivation practices and nutritional quality of tomato crops to improve the sustainability of organic farming systems Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2620  
Permanent link to this record
 

 
Author Lehtonen, H.; Liu, X.; Purola, T. url  openurl
  Title Balancing Climate Change Mitigation and Adaptation with Socio-Economic Goals at Farms in Northern Europe Type Book Chapter
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Routledge Place of Publication Editor Paloviita, A.; Järvelä, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Adaptation, Policy and Food Supply Chain Management in Europe Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2598  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F. url  doi
openurl 
  Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 78 Issue Pages 60-72  
  Keywords Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests  
  Abstract The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4772  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E. url  doi
openurl 
  Title Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 145 Issue Pages 39-50  
  Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses  
  Abstract Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4767  
Permanent link to this record
 

 
Author Sandhu, H.; Wratten, S.D.; Porter, J.R.; Costanza, R.; Pretty, J.; Reganold, J.P. url  openurl
  Title Mainstreaming ecosystem services into future farming solutions Type Journal Article
  Year 2016 Publication The Solutions Journal Abbreviated Journal The Solutions Journal  
  Volume 7 Issue 2 Pages 40-47  
  Keywords  
  Abstract Agriculture has made remarkable advances in fulfilling the food and nutritional requirement of expanding human numbers worldwide. There are several sustainable farming systems that contribute to overall biodiversity conservation and associated ecosystem services. Yet agricultural practices that have come to predominate since the second half of the 20th century have led to the overuse of fossil fuel-based inputs, unsustainable exploitation of natural resources, and loss of biodiversity. These outcomes also have high costs to human health and the environment. Continuing with largely energy-intense, wasteful, polluting, and unsustainable agriculture is no longer a viable option for future world food security and human well-being. There is an urgent need for forms of agricultural production that improve natural capital and ecosystem services (ES) in food systems worldwide. Mainstreaming ES into future agriculture requires protocols to replace some of the nonrenewable resources (e.g. fossil fuel-based pesticides and fertilizers) with renewable resources (ES such as biological control of insect pests or nitrogen fixation by legumes). The protocols presented here have been tested in different agricultural systems that enable farmland to simultaneously provide food and a range of ecosystem services. Recent research demonstrates that managed systems with these protocols exhibit higher economic value of ecosystem services. Thus, there is need to support the deployment of these protocols through various policy mechanisms for the long-term sustainability of agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: