toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rusu, T. url  doi
openurl 
  Title Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage Type Journal Article
  Year 2014 Publication International Soil and Water Conservation Research Abbreviated Journal International Soil and Water Conservation Research  
  Volume 2 Issue 4 Pages 42-49  
  Keywords No-tillage; Minimum tillage; Yield; Energy efficiency; Soil conservation  
  Abstract (up) The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha− 1 for maize, 6.49 MJ ha− 1 for soybean, and 5.66 MJ ha− 1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-6339 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4637  
Permanent link to this record
 

 
Author Abdelrahman, H.; Cocozza, C.; Olk, D.C.; Ventrella, D.; Miano, T. url  doi
openurl 
  Title Carbohydrates and Amino Compounds as Short-Term Indicators of Soil Management: Soil Type Journal Article
  Year 2017 Publication Clean Soil Air Water Abbreviated Journal Clean Soil Air Water  
  Volume 45 Issue 1 Pages 757  
  Keywords  
  Abstract (up) The objective of this work was to evaluate the suitability of carbohydrates and amino compounds in soil and soil organic matter (SOM) fractions to depict the management-induced changes in soil over short-term course. Soil samples were collected from two experimental fields managed according to organic farming regulations and a sequential fractionation procedure was applied to separate the light fraction (LF), particulate organic matter (POM), and mobile humic acid (MHA). Contents of carbohydrates and amino compounds were determined in soil and correspondent SOM fractions. Over a 2-year course, carbohydrate contents decreased in the LF fraction while it increased noticeably in the POM and slightly in the MHA fractions leading into questioning whether decomposing materials get incorporated into older fractions. Amino N content constituted up to 30% of total soil N, with a major contribution of the humic fraction (MHA). Although the LF, POM, and MHA fractions showed the greatest amino N content after the compost-legumes combinations, the carbohydrate and amino N contents in the POM and MHA fractions of the unamended soil increased as large as the corresponding fertilized plots, underlining that conservative soil management results in accumulation of labile forms of soil C and N that consequently might build up soil fertility. The changes after different treatments suggest the suitability of carbohydrates and amino compounds as short-term indicators for soil management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1863-0650 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4993  
Permanent link to this record
 

 
Author Ruiu, L.M.; Maurizi, S.; Sassu, S.; Seddaiu, G.; Zuin, O.; Blackmore, C.; Roggero, P.P. url  doi
openurl 
  Title Re-Staging La Rasgioni: lessons learned from transforming a traditional form of conflict resolution to engage stakeholders in agricultural water governance Type Journal Article
  Year 2017 Publication Water Abbreviated Journal Water  
  Volume 9 Issue 4 Pages 297  
  Keywords co-researching; dairy farming; ecosystem perception; systemic governance; governance learning; irrigation; knowledge co-production; nitrate pollution; social learning; stakeholders; theatre  
  Abstract (up) This paper presents an informal process inspired by a public practice of conflict mediation used until a few decades ago in Gallura (NE Sardinia, Italy), named La Rasgioni (The Reason). The aim is twofold: (i) to introduce an innovative method that translates the complexity of water-related conflicts into a “dialogical tool”, aimed at enhancing social learning by adopting theatrical techniques; and (ii) to report the outcomes that emerged from the application of this method in Arborea, the main dairy cattle district and the only nitrate-vulnerable zone in Sardinia, to mediate contrasting positions between local entrepreneurs and representatives of the relevant institutions. We discuss our results in the light of four pillars, adopted as research lenses in the International research Project CADWAGO (Climate Change Adaptation and Water Governance), which consider the specific “social–ecological” components of the Arborea system, climate change adaptability in water governance institutions and organizations, systemic governance (relational) practices, and governance learning. The combination of the four CADWAGO pillars and La Rasgioni created an innovative dialogical space that enabled stakeholders and researchers to collectively identify barriers and opportunities for effective governance practices. Potential wider implications and applications of La Rasgioni process are also discussed in the paper.  
  Address 2017-04-24  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved yes  
  Call Number MA @ admin @ Serial 4944  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: