toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. url  openurl
  Title The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages 127-135  
  Keywords minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.  
  Abstract Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4795  
Permanent link to this record
 

 
Author (up) Rusu, T.; Moraru, P.I. url  openurl
  Title Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages 103-111  
  Keywords climate change monitoring; temperature regimes; soil moisture; adaptation technologies; transylvanian plain; agriculture; france; precipitation; circulation; adaptation; models  
  Abstract The Transylvanian Plain (TP) is an important agricultural production area of Romania that is included among the areas with the lowest potential of adapting to climate changes in Europe. Thermal and hydric regime monitoring is necessary to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data regarding ground temperature at 3 depths (10, 30, 50 cm), humidity at a depth of 10 cm, air temperature (at 1 m) and precipitation. For agricultural crops, the periods of drought and extreme temperatures require specific measures of adaptation to climate changes. During the growing season of crops in the spring (April – October) in the south-eastern, southern, and eastern escarpments, precipitation decreased by 43.8 mm, the air temperature increased by 0.37 degrees C, and the ground temperature increased by 1.91 degrees C at a depth of 10 cm, 2.22 degrees C at a depth of 20 cm and 2.43 degrees C at a depth of 30 cm compared with values recorded for the northern, north-western or western escarpments. Water requirements were ensured within an optimal time frame for 58.8-62.1% of the spring row crop growth period, with irrigation being necessary to guarantee the optimum production potential. The biologically active temperature recorded in the TP demonstrates the need to renew the division of the crop areas reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4650  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: