toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kros, J.; Bakker, M.M.; Reidsma, P.; Kanellopoulos, A.; Jamal Alam, S.; de Vries, W. url  doi
openurl 
  Title Impacts of agricultural changes in response to climate and socioeconomic change on nitrogen deposition in nature reserves Type Journal Article
  Year 2015 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.  
  Volume 30 Issue 5 Pages 871-885  
  Keywords Agricultural adaptation; Climate change; Land use change; Environmental; impact; Farming system; Nitrogen losses; netherlands; diversity; scenario  
  Abstract This paper describes the environmental consequences of agricultural adaptation on eutrophication of the nearby ecological network for a study area in the Netherlands. More specifically, we explored (i) likely responses of farmers to changes in climate, technology, policy, and markets; (ii) subsequent changes in nitrogen (N) emissions in responses to farmer adaptations; and (iii) to what extent the emitted N was deposited in nearby nature reserves, in view of the potential impacts on plant species diversity and desired nature targets. For this purpose, a spatially-explicit study at landscape level was performed by integrating the environmental model INITIATOR, the farm model FSSIM, and the land-use model RULEX. We evaluated two alternative scenarios of change in climate, technology, policy, and markets for 2050: one in line with a ‘global economy’ (GE) storyline and the other in line with a ‘regional communities’ (RC) storyline. Results show that the GE storyline resulted in a relatively strong increase in agricultural production compared to the RC storyline. Despite the projected conversions of agricultural land to nature (as part of the implementation of the National Ecological Network), we project an increase in N losses and N deposition due to N emissions in the study area of about 20 %. Even in the RC storyline, with a relatively modest increase in agricultural production and a larger expansion of the nature reserve, the N losses and deposition remain at the current level, whereas a reduction is required. We conclude that more ambitious green policies are needed in view of nature protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4565  
Permanent link to this record
 

 
Author (up) Mandryk, M.; Reidsma, P.; van Ittersum, M.K. url  doi
openurl 
  Title Scenarios of long-term farm structural change for application in climate change impact assessment Type Journal Article
  Year 2012 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.  
  Volume 27 Issue 4 Pages 509-527  
  Keywords agriculture; adaptation; climate change; farm structural change; flevoland; agricultural land-use; future; policy; adaptation; diversification; vulnerability; productivity; consequences; variability; performance  
  Abstract Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4477  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: