toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Comadira, G.; Rasool, B.; Karpinska, B.; Morris, J.; Verrall, S.R.; Hedley, P.E.; Foyer, C.H.; Hancock, R.D. url  doi
openurl 
  Title Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3639-3655  
  Keywords Animals; Aphids/drug effects/*physiology; Biomass; Carbon/pharmacology; Chlorophyll/metabolism; Cluster Analysis; *Disease Resistance/drug effects; Gases/metabolism; Gene Expression Regulation, Plant/drug effects; Hordeum/drug effects/genetics/*parasitology; Nitrogen/*deficiency/metabolism/pharmacology; Oxidation-Reduction/drug effects; Photosynthesis/drug effects; Plant Diseases/genetics/*parasitology; Plant Leaves/drug effects/genetics/metabolism; Plant Proteins/genetics/metabolism; Plant Shoots/drug effects/metabolism; RNA, Messenger/genetics/metabolism; Secondary Metabolism/drug effects; Seedlings/drug effects/*metabolism/*parasitology; Signal Transduction/drug effects; Thylakoids/drug effects/metabolism/parasitology; Transcription Factors/metabolism; Transcriptome/genetics; Cross-tolerance; Myzus persicae; kinase cascades; metabolite profiles; nitrogen limitation; oxidative stress; sugar signalling  
  Abstract Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4787  
Permanent link to this record
 

 
Author Halford, N.G.; Foyer, C.H. url  doi
openurl 
  Title Producing a road map that enables plants to cope with future climate change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3433-3434  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4704  
Permanent link to this record
 

 
Author Waterworth, W.M.; Bray, C.M.; West, C.E. doi  openurl
  Title The importance of safeguarding genome integrity in germination and seed longevity Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3549-3558  
  Keywords DNA Damage/genetics; DNA Repair/genetics; *Genome, Plant; Germination/*genetics; Plant Physiological Phenomena/*genetics; Seeds/*genetics; Ageing; DNA repair; double-strand break; germination; longevity; recombination; seed vigour; viability  
  Abstract Seeds are important to agriculture and conservation of plant biodiversity. In agriculture, seed germination performance is an important determinant of crop yield, in particular under adverse climatic conditions. Deterioration in seed quality is associated with the accumulation of cellular damage to macromolecules including lipids, protein, and DNA. Mechanisms that mitigate the deleterious cellular damage incurred in the quiescent state and in cycles of desiccation-hydration are crucial for the maintenance of seed viability and germination vigour. In early-imbibing seeds, damage to the embryo genome must be repaired prior to initiation of cell division to minimize growth inhibition and mutation of genetic information. Here we review recent advances that have established molecular links between genome integrity and seed quality. These studies identified that maintenance of genome integrity is particularly important to the seed stage of the plant lifecycle, revealing new insight into the physiological roles of plant DNA repair and recombination mechanisms. The high conservation of DNA repair and recombination factors across plant species underlines their potential as promising targets for the improvement of crop performance and development of molecular markers for prediction of seed vigour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4579  
Permanent link to this record
 

 
Author Zheng, B.; Chapman, S.C.; Christopher, J.T.; Frederiks, T.M.; Chenu, K. doi  openurl
  Title Frost trends and their estimated impact on yield in the Australian wheatbelt Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3611-3623  
  Keywords Adaptation, Physiological/genetics; Australia; Computer Simulation; Ecotype; *Freezing; Genotype; Geography; Seasons; Triticum/genetics/*growth & development/physiology; Breeding; climate change; crop adaptation; crop modelling; ideotype; post-head-emergence frost; reproductive frost; spring radiant frost  
  Abstract Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4580  
Permanent link to this record
 

 
Author Pilbeam, D.J. url  doi
openurl 
  Title Breeding crops for improved mineral nutrition under climate change conditions Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3511-3421  
  Keywords Breeding/*methods; *Climate Change; Crops, Agricultural/*growth & development; Environment; Minerals/*metabolism; *Nutritional Physiological Phenomena; Micronutrient; nitrogen; nutrient availability; nutrient use efficiency; phosphorus; quantitative trait loci (QTLs)  
  Abstract Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431; 0022-0957 ISBN Medium Review  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4575  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: