toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J.C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L.A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J.C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; Tavoni, M. url  doi
openurl 
  Title The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 153-168  
  Keywords Shared Socioeconomic Pathways; SSP; Climate change; RCP; Community scenarios; Mitigation; Adaptation  
  Abstract Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  
  Address 2017-06-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5008  
Permanent link to this record
 

 
Author (up) Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. url  doi
openurl 
  Title Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa Type Journal Article
  Year 2013 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 23 Issue 1 Pages 130-143  
  Keywords multiple cropping; sequential cropping systems; crop modelling; agricultural management; adaptation options; global vegetation model; future food-production; rainy-season; west-africa; agriculture; yield; maize; soil; variability; heat  
  Abstract Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4823  
Permanent link to this record
 

 
Author (up) Weindl, I.; Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Muller, C.; Dietrich, J.P.; Humpenoder, F.; Stevanovic, M.; Schaphoff, S.; Popp, A. doi  openurl
  Title Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices Type Journal Article
  Year 2017 Publication Global Environmental Change-Human and Policy Dimensions Abbreviated Journal Global Environmental Change-Human and Policy Dimensions  
  Volume 47 Issue Pages 121-132  
  Keywords Livestock; Productivity; Dietary changes; Consumptive water use; Water scarcity; Water resources; Climate-Change Mitigation; Greenhouse-Gas Emissions; Global Vegetation; Model; Land-Use; Comprehensive Assessment; Fresh-Water; Systems; Requirements; Irrigation; Carbon  
  Abstract Human activities use more than half of accessible freshwater, above all for agriculture. Most approaches for reconciling water conservation with feeding a growing population focus on the cropping sector. However, livestock production is pivotal to agricultural resource use, due to its low resource-use efficiency upstream in the food supply chain. Using a global modelling approach, we quantify the current and future contribution of livestock production, under different demand-and supply-side scenarios, to the consumption of “green” precipitation water infiltrated into the soil and “blue” freshWater withdrawn from rivers, lakes and reservoirs. Currently, cropland feed production accounts for 38% of crop water consumption and grazing involves 29% of total agricultural water consumption (9990 km(3) yr(-1)). Our analysis shows that changes in diets and livestock productivity have substantial implications for future consumption of agricultural blue water (19-36% increase compared to current levels) and green water (26-69% increase), but they can, at best, slow down trends of rising water requirements for decades to come. However, moderate productivity reductions in highly intensive livestock systems are possible without aggravating water scarcity. Productivity gains in developing regions decrease total agricultural water consumption, but lead to expansion of irrigated agriculture, due to the shift from grassland/green water to cropland/blue water resources. While the magnitude of the livestock water footprint gives cause for concern, neither dietary choices nor changes in livestock productivity will solve the water challenge of future food supply, unless accompanied by dedicated water protection policies.  
  Address 2018-01-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: