Records |
Author |
Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J. |
Title |
The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) |
Type |
Journal Article |
Year |
2015 |
Publication |
Geoscientific Model Development |
Abbreviated Journal |
Geosci. Model Dev. |
Volume |
8 |
Issue |
2 |
Pages |
261-277 |
Keywords |
land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth |
Abstract |
We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1991-9603 |
ISBN |
|
Medium |
Article |
Area |
|
Expedition |
|
Conference |
|
Notes |
CropM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
4559 |
Permanent link to this record |
|
|
|
Author |
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W. |
Title |
A new climate dataset for systematic assessments of climate change impacts as a function of global warming |
Type |
Journal Article |
Year |
2013 |
Publication |
Geoscientific Model Development |
Abbreviated Journal |
Geosci. Model Dev. |
Volume |
6 |
Issue |
5 |
Pages |
1689-1703 |
Keywords |
dangerous anthropogenic interference; vegetation model; carbon-cycle; emissions; targets |
Abstract |
In the ongoing political debate on climate change, global mean temperature change (Delta T-glob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of Delta T-glob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of Delta T-glob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs’ climate change properties, even though they, necessarily, utilise a simplified relationships between Delta T-glob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1991-9603 |
ISBN |
|
Medium |
Article |
Area |
|
Expedition |
|
Conference |
|
Notes |
CropM |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
4490 |
Permanent link to this record |