|   | 
Details
   web
Records
Author Sinabell, F.
Title (up) Climate change and policy impacts on protein crop production: a case study on integrated modeling Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-64
Keywords
Abstract This paper addresses protein crop production in Europe. European food and feed industries highly depend on imported protein crops and derived products and climate change is likely to affect domestic protein crop production and thus the import dependency. The recent reform of EU agricultural policy reform aims at promoting climate friendly agricultural practices and stimulating the production of protein crops. We choose three contrasting climate change scenarios as well as specifications of the recent CAP reform in order to investigate how farmers might adapt to changing land use restrictions and climate conditions. Output response, land allocation and nitrogen use are the main variables of interest. Exemplified for Austrian cropland, we apply an integrated modeling framework consisting of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. This model maximizes total gross margins by optimizing for land use and crop management practices for different scenarios of climate change and market conditions. Results obtained at a 1 km grid are aggregated to the national level. The model results indicate that changes in policy conditions, cropland use, and flexibility in crop management practices may have stronger effects on total protein crop production than climate change in the next decades. An expansion of current protein crop production leads to an increase in marginal opportunity costs, reduces mineral fertilizer input demand, and mainly replaces maize in the crop rotations. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2179
Permanent link to this record
 

 
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; Van Ittersum, M.K.
Title (up) Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.4
Keywords
Abstract Rather than on crop modelling only, climate change impact assessments in agriculture  need to be based on integrated assessment and farming systems analysis, and account for  adaptation at different levels. With a case study for Flevoland, the Netherlands, we  illustrate that 1) crop models cannot account for all relevant climate change impacts and  adaptation options, and 2) changes in technology, policy and prices have had and are likely  to have larger impacts on farms than climate change. While crop modelling indicates  positive impacts of climate change on yields of major crops in 2050, a semi-quantitative  and participatory method assessing impacts of extreme events shows that there are  nevertheless several climate risks. A range of adaptation measures are, however, available  to reduce possible negative effects at crop level. In addition, at farm level farmers can  change cropping patterns, and adjust inputs and outputs. Also farm structural change will  influence impacts and adaptation. While the 5th IPCC report is more negative regarding  impacts of climate change on agriculture compared to the previous report, also for  temperate regions, our results show that when putting climate change in context of other  drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may  be less negative in some regions and opportunities are revealed. These results refer to a  temperate region, but an integrated assessment may also change perspectives on climate  change for other parts of the world. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2097
Permanent link to this record
 

 
Author Ventrella, D.
Title (up) Climate change impact on green and blue water consumptive use for winter durum wheat and tomato cultivated in Southern Italy Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-70
Keywords
Abstract In this study at regional scale, the model DSSAT was applied in order to simulate the cultivation of winter durum wheat and tomato to estimate the green water and the blue water through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years in three scenario including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5°C. In this paper GW e BW contribution for evapotranspiration requirement is presented and analyzed on a distributed scale related to Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. For winter durum wheat the GW component was predominant compared to BW, covering almost 90% of the ETc of WW. Under Baseline scenario the weight of BW was of 11%, slightly increasing in the future scenarios. After considering the probability the climate change determine an increase of irrigation practice for WW from climatic point of view we carried out an example of analysis in order to verify the economical convenience of supplemental irrigation for WW cultivation. The probability that irrigation has a negative or zero income ranged between 55 and 60% and the climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.For tomato, in the baseline and future scenarios affected by global warming, the analysis of ET components showed with strong evidence the importance of irrigation that is confirmed as irreplaceable practice for obtaining sustainable yield from productive and economical point of view.GW and BW, both in the case of wheat and tomato, appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, but also on the hydraulic characteristics of soils corresponding to each calculation unit. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2185
Permanent link to this record
 

 
Author Dono, G.
Title (up) Climate change impact on production and income of Mediterranean farming systems: a case study Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-17
Keywords
Abstract Adaptation to climate change calls for local responses. The impact of a 2020-30 climate scenario was assessed on a 54,000 ha Mediterranean district characterized by a variety of farming systems (FS), ranging from low-input rainfed (42% of the district area and 16% of the district net income) to high-input irrigated. Climate was generated with a Regional Atmospheric Modelling System nested into a full coupled atmosphere-ocean global simulation model, under the A1B emission scenario. Crop responses to climate were assessed using EPIC after calibration. The Temperature Humidity Index was used to assess the impact on dairy cow milk yield. Farmer choices were simulated on 13 representative FS by an hybrid model of supply, territory and farm. The adaptive choices were simulated through Discrete Stochastic Programming, fed by probability distribution functions output of crop and animal models.  The expected decrease in spring rainfall (-33%) will affect hay-crop production and the net income (NI) of rainfed livestock farms (-5 to -12%). The increased summer temperature will affect dairy cows NI up to -5.9%. Rice production is expected to increase up to +10%. Overall, the NI of irrigated and rainfed farms will be -2.1%  and -5.4% of the current NI respectively, with livestock FS being the most affected and rice and horticultural FS the most resilient. Results will provide an ideal mediating object for engaging policy makers and stakeholders in designing visionary adaptive strategies. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2132
Permanent link to this record
 

 
Author Biewald, A.
Title (up) Climate dependent equilibrium model Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-T2.3
Keywords
Abstract In the framework of AgMIP (Agricultural Model Intercomparison Project; www.agmip.org), several articles have been published in which about 10 leading, agro-economic models analysed the impact of climate change on agricultural yields, area, consumption and food prices (Lotze-Campen et al. 2014, Nelson et. al 2014a,b Schmitz et al. 2014). A part of these articles are available freely through the publisher (e.g. http://www.pnas.org/content/111/9/3274). PIK has not only contributed through model simulations with the spatially explicit, agro-economic model MAgPIE, but also by coordinating this activity. Starting with AgMIP phase II in 2015, AgMIP has now for the first time conducted the model-analysis for different “Shared Socio-economic Pathways” (short SSPs). A first study has been published in the renowned journal “Environmental Research Letters” (Wiebe et al. 2015). These are important contributions to task 2.3 which aimed at simulating the impact of global climate changes on agricultural systems.Another study which is under revision in the journal PNAS, investigates the impact of climate change on agricultural welfare. The results of this paper are based on simulations with 20 different General Circulation Models (GCMs). This provides the opportunity to understand the uncertainty inherent in the different climate models better and improves the credibility of results.All mentioned articles and results are based on harmonized yield changes, which are a result of multi-model simulations, conducted in the framework of ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) and coordinated at PIK. These model results are publicly available (www.isi-mip.org) and part of an open source strategy of the institute. The modelling group around the agro-economic model MAgPIE (Model of Agriculture and its Impact on the Environment) currently discusses an open source strategy for publishing the model code. As a first step, a detailed description of the model will be available shortly (http://redmine.pik-potsdam.de/projects/magpie/wiki).PIK and the modelling group around MAgPIE have also contributed to the geoportal GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) where project partners can publish and share global and regional data sets as well as model results on scenarios of land use, climate change and economic development. MAgPIE results on landuse change, emissions and deforestation for different socio-economic scenarios have been made available there (http://catalog-glues.ufz.de/terraCatalog/Start.do;jsessionid=80F6A3D2C446674B898881D0589887E4). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2112
Permanent link to this record