|   | 
Details
   web
Records
Author Yin, X.
Title Effects of climatic factors, drought risk and irrigation requirement on maize yield in the northeast farming region of China over 1961 to 2010 Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages (down) Sp5-72
Keywords
Abstract The Northeast Farming Region (NFR) is the most important and the largest rain-fed maize production region in China, accounting for 30% of China’s maize. We investigated the effects of climatic factors, drought risk and irrigation requirement on maize yield in different maize growth phases during 1961 to 2010 using a statistical analysis of observed yield from 44 stations in NFR. We divided the maize growing season into four growth phases, comprising seeding, vegetative, flowering and maturity. The dual crop coefficient was used to calculate crop evapotranspiration and soil water balance during the maize growing season. The effects of mean temperature, radiation, effective rainfall, water deficit, drought stress days, actual crop evapotranspiration (ETa) and irrigation requirement in different growth phases were included in the statistical model to predict maize yield. During the period 1961 to 2010, mean temperature increased significantly in all growth phases in NFR, while radiation decreased significantly in southern NFR in the seeding, vegetative and flowering phases. Effective rainfall increased in the seeding and vegetative phases leading to less water deficit, whereas decreased effective rainfall in the flowering and maturity phases enhanced water deficit. More days with drought stress were concentrated in western NFR where larger volumes of irrigation were needed. Our results indicate that the increase of mean temperature in the seeding and maturity phases was beneficial for maize yield, higher ETa in each growth phase would lead to yield increase, but too high rainfall would damage maize yield. The results also show that water deficit and drought stress days had significant negative effects on maize yield, and the absence of irrigation would manifest such effects on maize production in NFR. Therefore, the development of irrigation and drainage systems is highly needed for ensuring the stability of maize production in NFR. In addition, other adaptation measures like introducing new cultivars and optimizing soil and crop management to better conserve soil water would be beneficial for future maize production. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2187
Permanent link to this record
 

 
Author Woolnough, S.
Title Climate Modelling and Sub-seasonal to Seasonal Prediction: Opportunities and Challenges Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages (down) Sp5-71
Keywords
Abstract Dr Steve Woolnough is a Principal Research Fellow in the Climate directorate of the National Centre for Atmospheric Science, and leads their Tropical Group. His interests are in the variability of the Tropical Climate System on intraseasonal to seasonal timescales, and the representation of the tropical climate system in weather and climate prediction models. He is a member of three international panels of the WMO including the Steering Group of their sub-seasonal to seasonal prediction project. Dr Woolnough will discuss the current state of climate modelling and introduce some of the uncertainties in prediction of regional climate change, and the opportunities to narrow these uncertainties. He will also discuss the current state of sub-seasonal to seasonal prediction and introduce the WCRP/WWRP Sub-seasonal Prediction Project, a new WMO project to promote research into and application of operational prediction systems. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2186
Permanent link to this record
 

 
Author Ventrella, D.
Title Climate change impact on green and blue water consumptive use for winter durum wheat and tomato cultivated in Southern Italy Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages (down) Sp5-70
Keywords
Abstract In this study at regional scale, the model DSSAT was applied in order to simulate the cultivation of winter durum wheat and tomato to estimate the green water and the blue water through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years in three scenario including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5°C. In this paper GW e BW contribution for evapotranspiration requirement is presented and analyzed on a distributed scale related to Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. For winter durum wheat the GW component was predominant compared to BW, covering almost 90% of the ETc of WW. Under Baseline scenario the weight of BW was of 11%, slightly increasing in the future scenarios. After considering the probability the climate change determine an increase of irrigation practice for WW from climatic point of view we carried out an example of analysis in order to verify the economical convenience of supplemental irrigation for WW cultivation. The probability that irrigation has a negative or zero income ranged between 55 and 60% and the climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.For tomato, in the baseline and future scenarios affected by global warming, the analysis of ET components showed with strong evidence the importance of irrigation that is confirmed as irreplaceable practice for obtaining sustainable yield from productive and economical point of view.GW and BW, both in the case of wheat and tomato, appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, but also on the hydraulic characteristics of soils corresponding to each calculation unit. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2185
Permanent link to this record
 

 
Author Van Oijen, M.
Title Methods for risk analysis and spatial upscaling of process-based models: Experiences from projects Carbo-Extreme and GREENHOUSE Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages (down) Sp5-69
Keywords
Abstract In the recently finished EU-funded project Carbo-Extreme, we developed a simple probabilistic method for quantifying vulnerabilities and risks to ecosystems (http://iopscience.iop.org/1748-9326/8/1/015032). The method defines risk as expected loss due to environmental hazards, and shows how such risk can be calculated as the product of ecosystem vulnerability and hazard probability. The method was used with six different vegetation models to estimate current and future drought risks for crops, grasslands and forests across Europe (http://www.biogeosciences.net/11/6357/2014/bg-11-6357-2014.html).In the still ongoing UK-funded project GREENHOUSE, the focus is on spatial upscaling of local measurements and model predictions of greenhouse gas emissions to wider regions. As part of this work, we are comparing different model upscaling methods – ranging from naive input aggregation to geostatistics – and quantify the uncertainties associated with the upscaling. This work builds on an earlier inventory of model upscaling methods that was produced in a collaboration of CEH-Edinburgh and the University of Bonn (https://www.stat.aau.at/Tagungen/statgis/2009/StatGIS2009Van%20Oijen1.pdf). Here we show a comparison of the methods using model predictions for the border region of England and Scotland. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2184
Permanent link to this record
 

 
Author Topp, C.
Title Pesticide management in Scottish spring barley – insights from sowing dates Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages (down) Sp5-68
Keywords
Abstract Better management of pesticides is a potentially important strategy for reducing environmental impact while maintaining yields.  Pesticide use is influenced by several drivers, including sowing date, which can directly impact disease burden.  Analysis of sowing dates for spring barley was the first stage of this project, which aims to provide insight into areas of farm management which can be optimised to reduce environmental impact.  Sowing dates were taken from the Adopt a Crop database, which contains data from 1983 onwards for commercial farms across Scotland.  Work was carried out at three levels: national, to provide an overall picture of historical patterns; regional, to highlight differences within Scotland; and case study, to determine whether the national trend was visible in a single region.  A general trend towards later sowing of spring barley in Scotland is visible – yet, this pattern is less pronounced in certain regions.  Future work must therefore consider what factors have lead to this shift, to more fully understand interactions between sowing date and the environment. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2183
Permanent link to this record