toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Özkan, Ş.; Vitali, A.; Lacetera, N.; Amon, B.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; de Haas, Y.; Dufrasne, I.; Elliott, J.; Eory, V.; Fox, N.J.; Garnsworthy, P.C.; Gengler, N.; Hammami, H.; Kyriazakis, I.; Leclère, D.; Lessire, F.; Macleod, M.; Robinson, T.P.; Ruete, A.; Sandars, D.L.; Shrestha, S.; Stott, A.W.; Twardy, S.; Vanrobays, M.L.; Ahmadi, B.V.; Weindl, I.; Wheelhouse, N.; Williams, A.G.; Williams, H.W.; Wilson, A.J.; Østergaard, S.; Kipling, R.P. doi  openurl
  Title Challenges and priorities for modelling livestock health and pathogens in the context of climate change Type Journal Article
  Year 2016 Publication Environmental Research Abbreviated Journal Environ. Res.  
  Volume 151 Issue Pages 130-144  
  Keywords (up)  
  Abstract Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4766  
Permanent link to this record
 

 
Author Knox, J.; Daccache, A.; Hess, T.; Haro, D. url  doi
openurl 
  Title Meta-analysis of climate impacts and uncertainty on crop yields in Europe Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue Pages 113004  
  Keywords (up)  
  Abstract Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (−11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5011  
Permanent link to this record
 

 
Author Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.A.; Schleussner, C.-F.; Ruane, A.; Gessner, U.; Hoogenboom, G.; Boote, K.; Shelia, V.; Saeed, F.; Wisser, D.; Hadir, S.; Laux, P.; Gaiser, T. doi  openurl
  Title Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna Type Journal Article
  Year 2018 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 13 Issue 3 Pages 034014  
  Keywords (up) 1.5 degrees C; West Africa; food security; climate change; DSSAT; SIMPLACE; Climate-Change Impacts; Sub-Saharan Africa; Food Security; Heat-Stress; Canopy Temperature; Paris Agreement; Pearl-Millet; Maize Yield; Crop; Yields; Model; MACSUR or FACCE acknowledged.  
  Abstract To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5196  
Permanent link to this record
 

 
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 4 Pages 045004  
  Keywords (up) climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semiquantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4800  
Permanent link to this record
 

 
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 4 Pages 045004  
  Keywords (up) climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4649  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: