toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Relationship between stoichiometry and ecosystem services: A case study of it organic farming systems Type Journal Article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 85 Issue Pages 400-408  
  Keywords Ecosystem services; Organic farming; Stoichiometry; Field practices; Soil Carbon Storage; Ecological Stoichiometry; Agricultural Management; Earthworm Populations; Nitrogen-Fixation; Cropping Systems; New-Zealand; Quantification; Valuation; Matter  
  Abstract Over the past five decades, the delivery of global Ecosystem Services (ES) has diminished and this has been driven partly by anthropogenic activities. Agro-ecosystems cover almost 40% of the terrestrial surface on Earth, and have been considered as one of the most significant ecological experiments with a potential to both contribute to and mitigate global ES loss. In the present study, six different ES (food and fodder production, carbon sequestration, biological pest control, soil water storage, nitrogen regulation and soil formation) were quantified in various organic farming systems and the hypothesis that there is a link between these ES and C:N, C:O and H:O stoichiometric ratios in farming systems was experimentally tested. The results show that different ES are correlated with the stoichiometric ratios to different extents. There are significant positive linear correlations between C:N stoichiometric ratios and all measured ES in the investigated organic farming systems, while not all the ES are correlated with the C:O and H:O ratios. This study has expanded the horizons of stoichiometry by linking a fundamental chemical property of molecules with an emergent property of organic farming systems, namely their ecosystem service provision.  
  Address 2018-06-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5201  
Permanent link to this record
 

 
Author (up) Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; Sieber, S.; Stachow, U.; Starick, A.; Wieland, R.; Wurbs, A.; Zander, P. url  doi
openurl 
  Title Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany Type Journal Article
  Year 2015 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 48 Issue Pages 505-517  
  Keywords scenarios; impact assessment; agricultural intensification; land use change; irrigation; bioenergy; social and environmental indicators; climate-change; landscape; model  
  Abstract Decisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government. The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5 million tons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials. In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4561  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: