toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ventrella, D.; Charfeddine, M.; Giglio, L.; Castellini, M. url  doi
openurl 
  Title Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 16  
  Keywords DSSAT model; climate change; winter durum wheat; tomato; sowing time; transplanting time  
  Abstract Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for certain environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of the most productive areas of Italy (i.e. Capitanata, Puglia), using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975- 2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060) and +5°C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY) increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4821  
Permanent link to this record
 

 
Author Schaap, B.F.; Reidsma, P.; Verhagen, J.; Wolf, J.; van Ittersum, M.K. url  doi
openurl 
  Title Participatory design of farm level adaptation to climate risks in an arable region in The Netherlands Type Journal Article
  Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 48 Issue Pages 30-42  
  Keywords adaptation; climate change; impact; crop production; wheat; onion; potato; sugar beet; crop production; change impacts; agriculture; variability; events; europe; model  
  Abstract In the arable farming region Flevoland in The Netherlands climate change, including extreme events and pests and diseases, will likely pose risks to a variety of crops including high value crops such as seed potato, ware potato and seed onion. A well designed adaptation strategy at the farm level can reduce risks for farmers in Flevoland. Currently, most of the impact assessments rely heavily on (modelling) techniques that cannot take into account extreme events and pests and diseases and cannot address all crops, and are thus not suited as input for a comprehensive adaptation strategy at the farm level. To identify major climate risks and impacts and develop an adaptation measure portfolio for the most relevant risks we complemented crop growth modelling with a semi-quantitative and participatory approach, the Agro Climatic Calendar (ACC), A cost-benefit analysis and stakeholder workshops were used to identify robust adaptation measures and design an adaptation strategy for contrasting scenarios in 2050. For Flevoland, potential yields of main crops were projected to increase, but five main climate risks were identified, and these are likely to offset the positive impacts. Optimized adaptation strategies differ per scenario (frequency of occurrence of climate risks) and per farm (difference in economic loss). When impacts are high (in the +2 degrees C and A1 SRES scenario) drip irrigation was identified as the best adaptation measure against the main climate risk heat wave that causes second-growth in seed and ware potato. When impacts are smaller (the +1 degrees C and B2 SRES scenario), other options including no adaptation are more cost-effective. Our study shows that with relatively simple techniques such as the ACC combined with a stakeholder process, adaptation strategies can be designed for whole farming systems. Important benefits of this approach compared to modelling techniques are that all crops can be included, all climate factors can be addressed, and a large range of adaptation measures can be explored. This enhances that the identified adaptation strategies are recognizable and relevant for stakeholders. (C) 2013 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4809  
Permanent link to this record
 

 
Author Rusu, T.; Moraru, P.I.; Bogdan, I.; Pop, A.; Coste, C.; Marin, D.I.; Mihalache, M. url  openurl
  Title Impacts of climate change on agricultural technology management in the Transylvanian Plain, Romania Type Journal Article
  Year 2013 Publication Scientific Papers, Series A. Agronomy Abbreviated Journal Scientific Papers, Series A. Agronomy  
  Volume Lvi Issue Pages 113-118  
  Keywords climate monitoring; agricultural technology management; Transylvanian Plain  
  Abstract The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Each station stores electronic data of ground temperature on 3 different levels of depth (10, 30 and 50 cm), of soil humidity at a depth of 10 cm, of the air temperature at 1 meter and of precipitation. Monitoring the thermal and hydric regime of the area is essential in order to identify and implement sets of measures of adjustment to the impact of climatic changes. After analyzing the recorded data, thermic and hydric, in the Transylvanian Plain, we recommend as optimal sowing period, advancing those known in the literature, with 5 days for corn and soybeans, and maintaining the same optimum period for sunflower and sugar beet. Water requirements are provided in an optimum, of 58.8 to 62.1% for the spring weeding crops during the growing season, thus irrigation is necessary to ensure optimum production potential. The amount of biological active degrees registered in Transylvanian Plain shows the necessity to reconstruct crop zoning, known in the literature, for the analyzed crops: wheat, corn, soy, sunflower and sugar beet.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4614  
Permanent link to this record
 

 
Author Allan, C.; Nguyen, T.P.L.; Seddaiu, G.; Wilson, B.; Roggero, P.P. url  doi
openurl 
  Title Integrating local knowledge with experimental research: case studies on managing cropping systems in Italy and Australia Type Journal Article
  Year 2013 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 8 Issue 2 Pages 15  
  Keywords participatory action research; agronomic research; local knowledge; knowledge integration  
  Abstract The sustainable development of agricultural systems is currently challenged by many complex agro-environmental issues. These are characterized by an incomplete understanding of the situation and the problems that arise, and the conflicting opinions that result, issues over boundaries that are often difficult to define, and controversy over the multiple goals and uncertain outcomes. Added to these characteristics, we also have the slow and often inadequate uptake and implementation of research outcomes in this complex, real world. In order to improve sustainability of agro-ecosystems, agronomic research must move away from the linear research approaches and extension practices adopted so far that have focused purely on biophysical agro-ecosystems. The theoretical operational space of agronomic research must be transformed by considering agronomic issues as part of a broader social-agro-ecosystem. One aspect of this transformation is the inclusion of knowledge collected on a local level with the participation of farmers on the ground. The integration of local experiential knowledge with traditional agronomic research is by necessity based on the participation of many different stakeholders and there can be no single blueprint for how best to develop and use the input received. However, agronomists and policy advisors require general guidelines drawn up from actual experience in order to accelerate positive agronomic change. We address this need through a comparative analysis of two case studies; one involves multi-stakeholder research in a cropping system in the dairy district of Arborea, Sardinia, Italy. The central question was: How can high crop production be maintained while also achieving the EU target water quality and minimizing the production costs? The second case is a multi-stakeholder soil health project from south-eastern Australia. Here the central question was: How can soil decline be prevented and reversed in this district, and soils made more resilient to future challenges? The Social Learning for the Integrated Management and sustainable use of water (SLIM) framework, a useful heuristic tool for exploring the dynamics of transformational change, guided the analysis of the case studies. Within this framework, a key indicator of success is the emergence of new knowledge from the creation of new spaces for learning between researchers and local stakeholders. The Italian case study appears to have been the most successful in this sense, as opportunities for joint exploration of research data allowed new potential farming responses to the central question to emerge. The multi-stakeholder processes in the Australian case focused more on providing public openings for individual learning, and missed the opportunity for new knowledge to emerge through joint exploration. We conclude that participatory approaches may enable transformative practice through knowledge integration, but that this process is not an automatic outcome of increased community participation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4482  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. url  doi
openurl 
  Title Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 15  
  Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation  
  Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: