|   | 
Details
   web
Records
Author (up) Bonatti, M.; Schlindwein, S.L.; De Vasconcelos, A.C.F.; Sieber, S.; Agostini, L.R.D.; Lana, M.A.; Fantini, A.C.; Homem, L.H.I.; Canci, A.
Title Social organization and agricultural strategies to face climate variability: a case study in Guaraciaba, southern Brazil Type Journal Article
Year 2013 Publication Sustainable Agriculture Research Abbreviated Journal Sustainable Agriculture Research
Volume 2 Issue 3 Pages 118
Keywords
Abstract Climate scenarios and projections have suggested that the impacts of climate change on land use will be noticed particularly by the communities that depend on natural resources for their subsistence. The climate vulnerability of poor communities varies greatly, but in general, climate change combines with other threats and becomes superimposed on existing vulnerabilities. This paper presents a case study that strives to understand the social organization in a vulnerable community of Guaraciaba, in southern Brazil, to investigate aspects of an adaptation strategy to climate change based on the local development and conservation of landraces of a set of crop species. Landraces are varieties better adapted to adversities, especially drought, which is an important threat to the famers in the region. Every farmer receives annually a “kit of biodiversity”, a set of local varieties with the amount of seeds necessary to be cultivated in order to produce enough food for the family. The study had a qualitative approach and was carried out through semi-structured interviews with technicians and 30% of the rural families who farm with landraces. The study concludes that the factors that make this adaptation strategy sustainable are: the ability to undertake actions strongly based on local socio-cultural needs (a social support network), biodiversity management practices designed to reduce external economic dependence, self management of genetic resources, the establishment of priorities based on locally available resources, a work plan for community participation (field days, a community based festival), the establishment of the roles of community in the planning and implementation of programs for biodiversity management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1927-0518 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4600
Permanent link to this record
 

 
Author (up) de Visser, C.; Schoorlemmer, H.; Golaszewski, J.; Olba-Ziety, E.; Stolarski, M.; Brodzinski, Z.; Myhan, R.; Baptista, F.; Silva, L.L.; Murcho, D.; de Castro Neto, M.; Meyer-Aurich, A.; Briassoulis, D.P., P.; Balafoutis, A.; Lutsyuk, C.; Dalgaard, T.
Title Agenda for Transnational Co-operation on energy efficiency in agriculture Type Report
Year 2013 Publication Project deliverable report 4.5. FP7 EU project: Agriculture & Energy Efficiency AGREE, www.agree.aua.gr. Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Wageningen Editor
Language Summary Language Original Title
Series Editor Wageningen UR Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2071
Permanent link to this record
 

 
Author (up) Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 16 Issue 4 Pages 361-384
Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios
Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4519
Permanent link to this record
 

 
Author (up) Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 3 Pages 255-272
Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe
Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 1573-1618 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4621
Permanent link to this record
 

 
Author (up) Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Toderi, M.
Title Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands Type Journal Article
Year 2019 Publication Agriculture-Basel Abbreviated Journal Agriculture-Basel
Volume 9 Issue 8 Pages 165
Keywords ecosystem services; C stock; CO2; GHG; land use change; Q(10); temperature; vegetation; patterns; emissions; climate
Abstract Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5229
Permanent link to this record