|   | 
Details
   web
Records
Author Banse, M.; Brouwer, F.; Palatnik, R.R.; Sinabell, F.
Title The Economics of European Agriculture under Conditions of Climate Change (Editorial) Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue 3 Pages 131-132
Keywords (up)
Abstract This Special Issue on “The Economics of European Agriculture under Conditions of Climate Change” brings together a selection of papers that contribute to the understanding of recent developments related to agriculture and climate change in four European coun- tries. The focus of the Special Issue is on quantitative modeling and empirical analyses. The papers presented here not only cover the heterogeneity of agriculture in Europe with case studies from the Mediterranean (Italy), central (Austria) and north-western Europe (Ireland and Scotland) but also give insights into the diversity of quantitative modeling approaches in agriculture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Editorial material
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4763
Permanent link to this record
 

 
Author Shrestha, S.; Hennessy, T.; Abdalla, M.; Forristal, D.; Jones, M.J.
Title Determining short term responses of Irish dairy farms under climate change Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue 3 Pages 143-155
Keywords (up)
Abstract This study aimed to determine short term farm responses of Irish dairy farms under climate change. The Irish National Farm Survey data and Irish weather data were the main datasets used in this study. A set of simulation models were used to determine grass yields and field time under a baseline scenario and a future climate scenario. An optimising farm level model which maximises farm net income under limiting farm resources was then run under these scenarios. Changes in farm net incomes under the climate change scenario compared to the baseline scenario were taken as a measure to determine the effect of climate change on farms. Any changes in farm activities under the climate run compared to the baseline run were considered as farm’s responses to maximise farm profits. The results showed that there was a substantial increase in yields of grass (49% to 56%) in all regions. The impact of climate change on farms was different based on the regions. Dairy farms in the Border, Midlands and South East regions suffered whereas dairy farms in other regions generally fared better under the climate change scenario. For a majority of farms, a substitution of concentrate feed with grass based feeds and increasing stocking rate were identified as the most common farm responses. However, farms replaced concentrate feed at varying degree. Dairy farms in the Mid East showed a move towards beef production system where medium dairy farms in the South East regions shifted entire tillage land to grass land. Farms in the South East region also kept animals on grass longer under the climate change scenario compared to the baseline scenario.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4672
Permanent link to this record
 

 
Author Eory, V.; MacLeod, M.; Shrestha, S.; Roberts, D.
Title Linking an economic and a life-cycle analysis biophysical model to support agricultural greenhouse gas mitigation policy Type Journal Article
Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics
Volume 63 Issue Pages 133-142
Keywords (up)
Abstract Greenhouse gas (GHG) mitigation is one of the main challenges facing agriculture, exacerbated by the increasing demand for food, in particular for livestock products. Production expansion needs to be accompanied by reductions in the GHG emission intensity of agricultural products, if significant increases in emissions are to be avoided. Suggested farm management changes often have systemic effects on farm, therefore their investigation requires a whole farm approach. At the same time, changes in GHG emissions arising offfarm in food supply chains (pre- or post-farm) can also occur as a consequence of these management changes. A modelling framework that quantifies the whole-farm, life-cycle effects of GHG mitigation measures on emissions and farm finances has been developed. It is demonstrated via a case study of sexed semen on Scottish dairy farms. The results show that using sexed semen on dairy farms might be a costeffective way to reduce emissions from cattle production by increasing the amount of lower emission intensity ‘dairy beef’ produced. It is concluded that a modelling framework combining a GHG life cycle analysis model and an economic model is a useful tool to help designing targeted agri-environmental policies at regional and national levels. It has the flexibility to model a wide variety of farm types, locations and management changes, and the LCA-approach adopted helps to ensure that GHG emission leakage does not occur in the supply chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4670
Permanent link to this record
 

 
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D.
Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 85-85
Keywords (up) climate change impacts; economic models of agriculture; scenarios; system model; demand; cmip5
Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4796
Permanent link to this record
 

 
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D.
Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 85-101
Keywords (up) climate change impacts; economic models of agriculture; scenarios; system model; demand; CMIP5
Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4536
Permanent link to this record