toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume (down) 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5199  
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y. url  doi
openurl 
  Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 214-215 Issue Pages 483-493  
  Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts  
  Abstract Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4714  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z. url  doi
openurl 
  Title Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume (down) 189 Issue Pages 43-50  
  Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2  
  Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4731  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume (down) 185 Issue Pages 1-11  
  Keywords china; climate variability; grain yield; impact; maize; northeast china; tropical maize; wheat yields; heat-stress; crop yields; temperature; impacts; sensitivities; hybrids; trends  
  Abstract Extensive studies had been conducted to investigate the impacts of climate change on maize growth and yield in recent decades; however, the dynamics of crop husbandry in response and adaptation to climate change were not taken into account. Based on field observations spanning from 1981 to 2009 at 167 agricultural meteorological stations across China, we found that solar radiation and temperature over the observed maize growth period had decreasing trends during 1981-2009, and maize yields were positively correlated with these climate variables in major production regions. The decreasing trends in solar radiation and temperature during maize growth period were mainly ascribed to the adoption of late maturity cultivars with longer reproductive growth period (RGP). The adoption of late maturing cultivars with longer RGP contributed substantially to grain yield increase during the last three decades. The climate trends during maize growth period varied among different production areas. During 1981-2009, decreases in mean temperature, precipitation and solar radiation over maize growth period jointly reduced yield most by 13.2-17.3% in southwestern China, by contrast in northwestern China increases in mean temperature, precipitation and solar radiation jointly increased yield most by 12.9-14.4%. Our findings highlight that the adaptations of maize production system to climate change through shifts of sowing date and genotypes are underway and should be taken into accounted when evaluating climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: