toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Quain, M.D.; Makgopa, M.E.; Marquez-Garcia, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H. doi  openurl
  Title (up) Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits Type Journal Article
  Year 2014 Publication Plant Biotechnology Journal Abbreviated Journal Plant Biotechnol. J.  
  Volume 12 Issue 7 Pages 903-913  
  Keywords Arabidopsis/*genetics/metabolism/physiology; Carbon Dioxide/metabolism; Chlorophyll/metabolism; Cystatins/*genetics/metabolism/physiology; Droughts; Lactones/*metabolism; Oryza/genetics; Phenotype; Plant Proteins/*genetics/metabolism/physiology; Seeds/genetics/metabolism/physiology; Soybeans/*genetics/metabolism/physiology; Stress, Physiological/*genetics; cystatin; cysteine protease; drought tolerance; photosynthesis; seed protein and yield; strigolactone  
  Abstract Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-7644 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4740  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.G.; Nendel, C.; Kiese, R.; Eckersten, H.; Haas, E.; Vanuytrecht, E.; Wang, E.; Kuhnert, M.; Trombi, G.; Moriondo, M.; Bindi, M.; Lewan, E.; Bach, M.; Kersebaum, K.C.; Rotter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title (up) Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 141-157  
  Keywords crop model; model comparison; spatial resolution; data aggregation; spatial heterogeneity; scaling; climate-change scenarios; sub-saharan africa; winter-wheat; spatial-resolution; yield response; input data; systems simulation; large-scale; soil data; part i  
  Abstract We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4754  
Permanent link to this record
 

 
Author Palosuo, T.; Rotter, R.P.; Salo, T.; Peltonen-Sainio, P.; Tao, F.; Lehtonen, H. url  doi
openurl 
  Title (up) Effects of climate and historical adaptation measures on barley yield trends in Finland Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 221-236  
  Keywords adaptation; climate; crop simulation modelling; plant breeding; spring barley; yield gap; crop production; spring barley; quantitative-evaluation; european conditions; cereal cultivars; growing-season; use efficiency; field crops; wheat; northern  
  Abstract In this study, the WOFOST crop simulation model was used together with comprehensive empirical databases on barley Hordeum vulgare L. to study the contributions of different yield-determining and -limiting factors to observed trends of barley yield in Finland from 1988 to 2008. Simulations were performed at 3 study sites representing different agro-ecological zones, and compared with the data from experimental sites and that reported by local farmers. Yield gaps between simulated potential yields and farmers’ yields and their trends were assessed. Positive observed yield trends of Finnish barley mostly resulted from the development and usage of new, high-yielding cultivars. Simulated trends in climatic potential and water-limited potential yields of individual cultivars showed a slight declining trend. Yield gaps showed an increasing trend in 2 out of 3 study areas. Since the mid-1990s, a major reason for this has been the lack of market and policy incentives favouring crop management decisions, i.e. annual fertilisation, soil maintenance, drainage and crop rotation decisions, aiming for higher yields. The study indicates potential options for increasing or maintaining barley yields in the future. The breeding of new climate-resilient cultivars is the primary option. However, this needs to work alongside overall adjustments to farm management and must be supported by financial incentives for farmers to increase yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4700  
Permanent link to this record
 

 
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. url  doi
openurl 
  Title (up) Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 188-198  
  Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage  
  Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4770  
Permanent link to this record
 

 
Author Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M. url  doi
openurl 
  Title (up) Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions Type Journal Article
  Year 2015 Publication Soil and Tillage Research Abbreviated Journal Soil and Tillage Research  
  Volume 153 Issue Pages 175-184  
  Keywords straw mulch; soil temperature; soil matric potential; soil penetration resistance; soybean biomass; seed and protein yield; water productivity; bulk-density; management-practices; crop production; n-2 fixation; compaction; growth; nitrogen; yield; straw; temperature  
  Abstract A field experiment was conducted on Haplic Luvisol developed from loess to assess the effects of soil deformation and straw mulch on soil water status (matric potential), temperature, penetration resistance, soybean growth, seed yield and yield components including straw, protein and oil in 2006-2008. Water use efficiencies related to the amount of rainfall during the growing seasons were calculated for seeds and total above ground biomass. The soil deformation levels (main plots) comprised the following trials: non-compacted (NC, 0 tractor pass), moderately compacted (MC, 3 passes), and strongly compacted (SC, 5 passes). A uniform seedbed in all plots was prepared by harrowing before planting. The main plots included sub-plots without and with surface wheat straw mulch (0.5 kg m(-2)) and the corresponding trials were NC + M, MC + M, SC + M. The amount and distribution of rainfall during the growing season differed among the experimental years with extended drought at bloom-full seed (R2-R6) stages in 2006, good water supply in 2007, and alternative periods with relatively high and low rainfalls in 2008. The effect of soil deformation on matric potential was influenced by weather conditions, soybean growth phase, mulching and depth. The differences were greatest in 2007 and 2008 at R7-R8 growth stages. With increasing deformation level from NC to SC matric potential for 0-15 cm depth during these stages significantly decreased from -401 to -1184 kPa in 2007 and from -1154 to -1432 kPa in 2008. On mulched soil, the corresponding ranges were from -541 to -841 klpa and from -748 to -1386 kPa, respectively. In the dry summer 2006, the differences were smaller and less consistent. Irrespective of soil deformation level, mulching reduced soil temperature in most growth phases but most pronounced initially. Most yield components increased from NC to MC during the experiments which could be attributed to enhanced root water and nutrient uptake rates and decreased from MC to SC due to high soil strength that restrained root growth down to deeper depth. The yields of seeds, straw, protein and oil as well as water productivity of soybean seed and biomass were improved by mulching in 2007-2008. This improvement was more pronounced in 2007 when the mean yield of seeds, protein and oil were significantly greater by 16, 29 and 11%, respectively and was attributed to positive alterations in soil water retention. These results indicate the possibilities of improvement in soybean performance by identifying allowable amount of traffic and mulching practices at planting depending on weather fluctuations during the growing season. Since rainfall and air temperature distribution in 2007 are close to those averaged over a long period of time, the use of straw mulch may positively affect soybean performance and yields excluding anomalously dry years. The positive effect of straw mulch can be enhanced by moderate soil deformation combined with seedbed loosening before planting to avoid constraining effect of soil structure on crop establishment. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-1987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: