toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue (down) 4 Pages 045004  
  Keywords climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4649  
Permanent link to this record
 

 
Author Rusu, T. url  doi
openurl 
  Title Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage Type Journal Article
  Year 2014 Publication International Soil and Water Conservation Research Abbreviated Journal International Soil and Water Conservation Research  
  Volume 2 Issue (down) 4 Pages 42-49  
  Keywords No-tillage; Minimum tillage; Yield; Energy efficiency; Soil conservation  
  Abstract The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha− 1 for maize, 6.49 MJ ha− 1 for soybean, and 5.66 MJ ha− 1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-6339 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4637  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
  Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 16 Issue (down) 4 Pages 361-384  
  Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios  
  Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4519  
Permanent link to this record
 

 
Author Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Mueller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; Ahmed, M.; Balkovic, J.; Basso, B.; Biernath, C.; Bindi, M.; Cammarano, D.; De Sanctis, G.; Dumont, B.; Espadafor, M.; Rezaei, E.E.; Ferrise, R.; Garcia-Vila, M.; Gayler, S.; Gao, Y.; Horan, H.; Hoogenboom, G.; Izaurralde, R.C.; Jones, C.D.; Kassie, B.T.; Kersebaum, K.C.; Klein, C.; Koehler, A.-K.; Maiorano, A.; Minoli, S.; San Martin, M.M.; Kumar, S.N.; Nendel, C.; O’Leary, G.J.; Palosuo, T.; Priesack, E.; Ripoche, D.; Roetter, R.P.; Semenov, M.A.; Stockle, C.; Streck, T.; Supit, I.; Tao, F.; Van der Velde, M.; Wallach, D.; Wang, E.; Webber, H.; Wolf, J.; Xiao, L.; Zhang, Z.; Zhao, Z.; Zhu, Y.; Asseng, S. doi  openurl
  Title Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming Type Journal Article
  Year 2019 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 25 Issue (down) 4 Pages 1428-1444  
  Keywords 1.5 degrees C warming; climate change; extreme low yields; food security; model ensemble; wheat production; Climate-Change; Crop Yield; Impacts; Co2; Adaptation; Responses; Models; Agriculture; Simulation; Growth  
  Abstract Efforts to limit global warming to below 2 degrees C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2 degrees C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0 degrees C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 degrees C scenario and -2.4% to 10.5% under the 2.0 degrees C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2 degrees C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5219  
Permanent link to this record
 

 
Author Bai, H.; Tao, F.; Xiao, D.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 135 Issue (down) 3-4 Pages 539-553  
  Keywords nitrogen-use efficiency; crop yields; winter-wheat; temperature; responses; impacts; decline; models; trends; plain  
  Abstract Using the detailed field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations in China, along with the Agricultural Production System Simulator (APSIM) rice-wheat model, we evaluated the impact of sowing/transplanting date on phenology and yield of rice-wheat rotation system (RWRS). We also disentangled the contributions of climate change, modern cultivars, sowing/transplanting density and fertilization management, as well as changes in each climate variables, to yield change in RWRS, in the past three decades. We found that change in sowing/transplanting date did not significantly affect rice and wheat yield in RWRS, although alleviated the negative impact of climate change to some extent. From 1981 to 2009, climate change jointly caused rice and wheat yield change by -17.4 to 1.5 %, of which increase in temperature reduced yield by 0.0-5.8 % and decrease in solar radiation reduced it by 1.5-8.7 %. Cultivars renewal, modern sowing/transplanting density and fertilization management contributed to yield change by 14.4-27.2, -4.7- -0.1 and 2.3-22.2 %, respectively. Our findings highlight that modern cultivars and agronomic management compensated the negative impacts of climate change and played key roles in yield increase in the past three decades.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4736  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: