toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Perego, A.; Giussani, A.; Fumagalli, M.; Sanna, M.; Chiodini, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue 2 Pages 39-50  
  Keywords nitrogen fertilization; crop simulation model; nitrate leaching; crop rotation; reduce ammonia losses; 4 cultivation systems; mineral nitrogen; maize; soil; slurry; simulation; model; water; groundwater  
  Abstract A critical analysis was performed to evaluate the potential risk of nitrate leaching towards groundwater in three Nitrate Vulnerable Zones (NVZs) of the Lombardia plain by applying the ARMOSA crop simulation model over a 20 years period (1988-2007). Each studied area was characterized by (i) two representative soil types, (ii) a meteorological data set, (iii) four crop rotations according to the regional land use, (iv) organic N load, calculated on the basis of livestock density. We simulated 3 scenarios defined by different fertilization time and amount of mineral and organic fertilizers. The A scenario involved no limitation in organic N application, while under the B and C scenarios the N organic amount was 170 and 250 kg N ha(-1)y(-1), respectively. The C scenario was compliant with the requirement of the 2012 Italian derogation, allowing only the use of organic manure with an efficiency greater than 65%. The model results highlighted that nitrate leaching was significantly reduced passing from the A scenario to the B and C ones (p<0.01); on average nitrogen losses decreased by up to 53% from A to B and up to 75% from A to C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4611  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Sanna, M.; Fumagalli, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title The ARMOSA simulation crop model: overall features, calibration and validation results Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue Pages 23-38  
  Keywords simulation model; crop growth; water dynamics; nitrogen leaching; performance assessment; nitrogen dilution curve; field-scale; soil; systems; maize; water; dynamics; growth; winter; evaporation  
  Abstract ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4612  
Permanent link to this record
 

 
Author Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Höjberg, A.L.; Langford, J.; Martinez, G.; Mostert, E. doi  openurl
  Title Opportunities and Barriers for Water Co-Governance – A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America Type Journal Article
  Year 2018 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 10 Issue 5 Pages 1634  
  Keywords collaborative governance; decentralized decision-making; non-point source pollution; nutrient management; water governance; management; policy; river; eutrophication; phosphorus; resources; nitrogen; hypoxia; quality; options  
  Abstract Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.  
  Address 2018-07-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5205  
Permanent link to this record
 

 
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F. doi  openurl
  Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
  Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 12 Issue 5 Pages 054023  
  Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY  
  Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.  
  Address 2017-06-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5035  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark Type Journal Article
  Year 2018 Publication Agroecology and Sustainable Food Systems Abbreviated Journal Agroecology and Sustainable Food Systems  
  Volume 42 Issue 5 Pages 504-529  
  Keywords Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance  
  Abstract Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming.  
  Address 2018-05-03  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-3565 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: