toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. url  doi
openurl 
  Title Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
  Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 208 Issue Pages 12-20  
  Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification  
  Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4715  
Permanent link to this record
 

 
Author Castañeda-Vera, A.; Leffelaar, P.A.; Álvaro-Fuentes, J.; Cantero-Martínez, C.; Mínguez, M.I. url  doi
openurl 
  Title Selecting crop models for decision making in wheat insurance Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 68 Issue Pages 97-116  
  Keywords aquacrop; ceres-wheat; cropsyst; wofost; model choice; rainfed semi-arid areas; radiation use efficiency; water deficit; use efficiency; management-practices; farming systems; field-capacity; soil; yield; evaporation; photosynthesis; transpiration; irrigation  
  Abstract In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial (down) 4710  
Permanent link to this record
 

 
Author Palosuo, T.; Rotter, R.P.; Salo, T.; Peltonen-Sainio, P.; Tao, F.; Lehtonen, H. url  doi
openurl 
  Title Effects of climate and historical adaptation measures on barley yield trends in Finland Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 221-236  
  Keywords adaptation; climate; crop simulation modelling; plant breeding; spring barley; yield gap; crop production; spring barley; quantitative-evaluation; european conditions; cereal cultivars; growing-season; use efficiency; field crops; wheat; northern  
  Abstract In this study, the WOFOST crop simulation model was used together with comprehensive empirical databases on barley Hordeum vulgare L. to study the contributions of different yield-determining and -limiting factors to observed trends of barley yield in Finland from 1988 to 2008. Simulations were performed at 3 study sites representing different agro-ecological zones, and compared with the data from experimental sites and that reported by local farmers. Yield gaps between simulated potential yields and farmers’ yields and their trends were assessed. Positive observed yield trends of Finnish barley mostly resulted from the development and usage of new, high-yielding cultivars. Simulated trends in climatic potential and water-limited potential yields of individual cultivars showed a slight declining trend. Yield gaps showed an increasing trend in 2 out of 3 study areas. Since the mid-1990s, a major reason for this has been the lack of market and policy incentives favouring crop management decisions, i.e. annual fertilisation, soil maintenance, drainage and crop rotation decisions, aiming for higher yields. The study indicates potential options for increasing or maintaining barley yields in the future. The breeding of new climate-resilient cultivars is the primary option. However, this needs to work alongside overall adjustments to farm management and must be supported by financial incentives for farmers to increase yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4700  
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. doi  openurl
  Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
  Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 27 Issue 4 Pages 463-477  
  Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil  
  Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4608  
Permanent link to this record
 

 
Author Leclère, D.; Jayet, P.-A.; de Noblet-Ducoudré, N. url  doi
openurl 
  Title Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change Type Journal Article
  Year 2013 Publication Ecological Economics Abbreviated Journal Ecol. Econ.  
  Volume 87 Issue Pages 1-14  
  Keywords climate change; agriculture; europe; residual impact; autonomous adaptation; water use efficiency; modeling; land-use; integrated assessment; future scenarios; change impacts; model; vulnerability; performance; emissions; nitrogen; lessons  
  Abstract The impact of climate change on European agriculture is subject to a significant uncertainty, which reflects the intertwined nature of agriculture. This issue involves a large number of processes, ranging from field to global scales, which have not been fully integrated yet. In this study, we intend to help bridging this gap by quantifying the effect of farm-scale autonomous adaptations in response to changes in climate. To do so, we use a modelling framework coupling the STICS generic crop model to the AROPAj microeconomic model of European agricultural supply. This study provides a first estimate of the role of such adaptations, consistent at the European scale while detailed across European regions. Farm-scale autonomous adaptations significantly alter the impact of climate change over Europe, by widely alleviating negative impacts on crop yields and gross margins. They significantly increase European production levels. However, they also have an important and heterogeneous impact on irrigation water withdrawals, which exacerbate the differences in ambient atmospheric carbon dioxide concentrations among climate change scenarios. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial (down) 4606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: