|   | 
Details
   web
Records
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S.
Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science
Volume 62 Issue Pages 166-180
Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale
Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0906-4702, 1651-1972 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4591
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.
Volume 27 Issue 10 Pages 3607-3622
Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis
Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0920-4741 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4487
Permanent link to this record
 

 
Author Tao, F.; Rötter, R.P.; Palosuo, T.; Höhn, J.; Peltonen-Sainio, P.; Rajala, A.; Salo, T.
Title Assessing climate effects on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 23-37
Keywords adaptation; drought; evapotranspiration; heat stress; risk; uncertainties; northern agriculture; model; weather; variability; precipitation; uncertainty; adaptation; simulation; dynamics; impacts
Abstract We adapted a large area crop model, MCWLA-Wheat, to winter wheat Triticum aestivum L. and spring wheat in Finland. We then applied Bayesian probability inversion and a Markov Chain Monte Carlo technique to analyze uncertainties in parameter estimations and to optimize parameters. Finally, a super-ensemble-based probabilistic projection system was updated and applied to project the effects of climate change on wheat productivity and water use in Finland. The system used 6 climate scenarios and 20 sets of crop model parameters. We projected spatiotemporal changes of wheat productivity and water use due to climate change/variability during 2021-2040, 2041-2070, and 2071-2100. The results indicate that with a high probability wheat yields will increase substantially in Finland under the tested climate change scenarios, and spring wheat can benefit more from climate change than winter wheat. Nevertheless, in some areas of southern Finland, wheat production will face increasing risk of high temperature and drought, which can offset the benefits of climate change on wheat yield, resulting in an increase in yield variability and about 30% probability of yield decrease for spring wheat. Compared with spring wheat, the development, photosynthesis, and consequently yield will be much less enhanced for winter wheat, which, together with the risk of extreme weather, will result in an up to 56% probability of yield decrease in eastern parts of Finland. Our study explicitly para meterized the effects of extreme temperature and drought stress on wheat yields, and accounted for a wide range of wheat cultivars with contrasting phenological characteristics and thermal requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4667
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 87-105
Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region
Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4662
Permanent link to this record
 

 
Author Wallach, D.; Nissanka, S.P.; Karunaratne, A.S.; Weerakoon, W.M.W.; Thorburn, P.J.; Boote, K.J.; Jones, J.W.
Title Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume Issue Pages
Keywords Uncertainty; Phenology; Parameter uncertainty; Multi-model ensemble; Generalized least squares; Rice; Crop model; APSIM; DSSAT
Abstract We consider predictions of the impact of climate warming on rice development times in Sri Lanka. The major emphasis is on the uncertainty of the predictions, and in particular on the estimation of mean squared error of prediction. Three contributions to mean squared error are considered. The first is parameter uncertainty that results from model calibration. To take proper account of the complex data structure, generalized least squares is used to estimate the parameters and the variance-covariance matrix of the parameter estimators. The second contribution is model structure uncertainty, which we estimate using two different models. An ANOVA analysis is used to separate the contributions of parameter and model uncertainty to mean squared error. The third contribution is model error, which is estimated using hindcasts. Mean squared error of prediction of time from emergence to maturity, for baseline +2 °C, is estimated as 108 days2, with model error contributing 86 days2, followed by model structure uncertainty which contributes 15 days2 and parameter uncertainty which contributes 7 days2. We also show how prediction uncertainty is reduced if prediction concerns development time averaged over years, or the difference in development time between baseline and warmer temperatures.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1161-0301 ISBN Medium Article
Area CropM Expedition Conference
Notes CropM; wos; ftnotmacsur; wsnotyet; Approved no
Call Number MA @ admin @ Serial 4777
Permanent link to this record