|   | 
Details
   web
Records
Author Quain, M.D.; Makgopa, M.E.; Marquez-Garcia, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H.
Title Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits Type Journal Article
Year 2014 Publication Plant Biotechnology Journal Abbreviated Journal Plant Biotechnol. J.
Volume 12 Issue (up) 7 Pages 903-913
Keywords Arabidopsis/*genetics/metabolism/physiology; Carbon Dioxide/metabolism; Chlorophyll/metabolism; Cystatins/*genetics/metabolism/physiology; Droughts; Lactones/*metabolism; Oryza/genetics; Phenotype; Plant Proteins/*genetics/metabolism/physiology; Seeds/genetics/metabolism/physiology; Soybeans/*genetics/metabolism/physiology; Stress, Physiological/*genetics; cystatin; cysteine protease; drought tolerance; photosynthesis; seed protein and yield; strigolactone
Abstract Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7644 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4740
Permanent link to this record
 

 
Author De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A.
Title Seasonal and multiannual effects of salinisation on tomato yield and fruit quality Type Journal Article
Year 2012 Publication Functional Plant Biology Abbreviated Journal Functional Plant Biology
Volume 39 Issue (up) 8 Pages 689-698
Keywords fruit ions concentration; fruit lipophilic and hydrophilic antioxidant; capacities; leaf water potentials; leaf stomatal conductance; short- and; long-term salinisation; salinity tolerance; water-stress; antioxidant activity; irrigation; growth; plants; soils; carotenoids; responses; crops
Abstract The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1445-4408 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4583
Permanent link to this record