toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Höglind, M.; Van Oijen, M.; Cameron, D.; Persson, T. doi  openurl
  Title Process-based simulation of growth and overwintering of grassland using the BASGRA model Type Journal Article
  Year 2016 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 335 Issue Pages 1-15  
  Keywords Cold hardening; Frost injury; Phleum pratense L.; Process-based; modelling; Winter survival; Yield; low-temperature tolerance; perennial forage crops; dry-matter; production; climate-change; nutritive-value; snow-cover; bayesian; calibration; timothy regrowth; phleum-pratense; lolium-perenne  
  Abstract Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers and plant breeders in addressing the challenges of climate change by simulating alternative roads of adaptation. They can also provide management decision support under current conditions. A drawback of existing grass models is that they do not take into account the effect of winter stresses, limiting their use for full-year simulations in areas where winter survival is a key factor for yield security. Here, we present a novel full-year PBM for grassland named BASGRA. It was developed by combining the LINGRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winter processes. We present the model and show how it was parameterized for timothy (Phleum pratense L.), the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRA simulates the processes taking place in the sward during the transition from summer to winter, including growth cessation and gradual cold hardening, and functions for simulating plant injury due to low temperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data from five different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudes from 59 degrees to 70 degrees N) and soil conditions. The total dataset included 11 variables, notably above-ground dry matter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used in the calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector from the single, Bayesian calibration, nearly all measured variables were simulated to an overall normalized root mean squared error (NRMSE) <0.5. For many site x experiment combinations, NRMSE was <0.3. The temporal dynamics were captured well for most variables, as evaluated by comparing simulated time courses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robust model, allowing for simulation of growth and several important underlying processes with acceptable accuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be tested further using independent data from a wide range of growing conditions. Finally we show an example of application of the model, comparing overwintering risks in two climatically different sites, and discuss future model applications. Further development work should include improved simulation of the dynamics of C reserves, and validation of winter tiller dynamics against independent data. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2016-07-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4764  
Permanent link to this record
 

 
Author (down) Hakala, K.; Jauhiainen, L.; Himanen, S.J.; RÖTter, R.; Salo, T.; Kahiluoto, H. doi  openurl
  Title Sensitivity of barley varieties to weather in Finland Type Journal Article
  Year 2012 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 150 Issue 02 Pages 145-160  
  Keywords climate-change; winter-wheat; spring wheat; reproductive growth; high-temperatures; changing climate; crop production; increased CO2; yield; tolerance  
  Abstract Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (25 degrees C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4586  
Permanent link to this record
 

 
Author (down) De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A. doi  openurl
  Title Seasonal and multiannual effects of salinisation on tomato yield and fruit quality Type Journal Article
  Year 2012 Publication Functional Plant Biology Abbreviated Journal Functional Plant Biology  
  Volume 39 Issue 8 Pages 689-698  
  Keywords fruit ions concentration; fruit lipophilic and hydrophilic antioxidant; capacities; leaf water potentials; leaf stomatal conductance; short- and; long-term salinisation; salinity tolerance; water-stress; antioxidant activity; irrigation; growth; plants; soils; carotenoids; responses; crops  
  Abstract The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1445-4408 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4583  
Permanent link to this record
 

 
Author (down) De Pascale, S.; Maggio, A.; Orsini, F.; Stanghellini, C.; Heuvelink, E. url  doi
openurl 
  Title Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils Type Journal Article
  Year 2015 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae  
  Volume 189 Issue Pages 139-149  
  Keywords Leaf osmotic adjustment; Stomatal resistance; Leaf water potential; Light; Salt stress; RUE; physiological-response; salt tolerance; drought stress; water-use; yield; nitrogen; interception; productivity; leaf; photosynthesis  
  Abstract Farmlands are increasingly exposed to degradation phenomena associated to climate change and agricultural practices, including irrigation. It is estimated that about 20% of the world’s irrigated land is salt affected. In this paper we aimed at evaluating the effect of seasonal and multiannual soil satinization on growth, yield, and radiation use efficiency of tomato in open field. Two field experiments were carried out at the Experimental Station of the University of Naples Federico II (latitude 40 degrees 31’N longitude 14 degrees 58’E) (Italy) on tomato during 2004 and 2005 to study the effect of five levels of water salinity: NSC (EC = 0.5 dS m(-1)), SW1 (EC= 2.3 dS m(-1)), SW2 (EC= 4.4 dS m(-1)), SW3 (EC= 8.5 dS m(-1)) and SW4 (EC= 15.7 dS m(-1)) in a soil exposed to one-season salinization (ST = short-term) and an adjacent soil exposed to >20 years salinization (LT = long-term). Plant growth, yield and fruit quality (pH, EC, total soluble solids and the concentration of reducing sugars and of titratable acids), and plant water relations were measured and radiation use efficiency (RUE) was calculated. Increasing water salinity negatively affected the leaf area index (LAI), radiation use efficiency (RUE) and above-ground dry weight (DW) accumulation resulting in lower total and marketable yield. Maximum total and marketable yield obtained with the NSC treatment were respectively 117.9 and 111.0 Mg ha(-1) in 2004 and 113.1 and 107.9 Mg ha(-1) in 2005. Although the smaller leaf area of salinized plants was largely responsible for reduced RUE, we found approximately 50% of this reduction to be accounted for by processes other than changed crop architecture. These may include an increased stomatal resistance, increased mesophyll resistance and other impaired metabolic functions that may occur at high salinity. Remarkably, we found that LT salinized plants had a slightly better efficiency of use of intercepted radiation (RUEIR) at a given EC of soil extract than ST salinized plants indicating that LT salinization, and consequent permanent modifications of the soil physical properties, may trigger additional physiological mechanisms of adaptation compared to ST salinized plants. These differences are relevant in light of the evolution of salinized areas, also in response to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4238 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4557  
Permanent link to this record
 

 
Author (down) Comadira, G.; Rasool, B.; Karpinska, B.; Morris, J.; Verrall, S.R.; Hedley, P.E.; Foyer, C.H.; Hancock, R.D. url  doi
openurl 
  Title Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3639-3655  
  Keywords Animals; Aphids/drug effects/*physiology; Biomass; Carbon/pharmacology; Chlorophyll/metabolism; Cluster Analysis; *Disease Resistance/drug effects; Gases/metabolism; Gene Expression Regulation, Plant/drug effects; Hordeum/drug effects/genetics/*parasitology; Nitrogen/*deficiency/metabolism/pharmacology; Oxidation-Reduction/drug effects; Photosynthesis/drug effects; Plant Diseases/genetics/*parasitology; Plant Leaves/drug effects/genetics/metabolism; Plant Proteins/genetics/metabolism; Plant Shoots/drug effects/metabolism; RNA, Messenger/genetics/metabolism; Secondary Metabolism/drug effects; Seedlings/drug effects/*metabolism/*parasitology; Signal Transduction/drug effects; Thylakoids/drug effects/metabolism/parasitology; Transcription Factors/metabolism; Transcriptome/genetics; Cross-tolerance; Myzus persicae; kinase cascades; metabolite profiles; nitrogen limitation; oxidative stress; sugar signalling  
  Abstract Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4787  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: