toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stratonovitch, P.; Semenov, M.A. doi  openurl
  Title Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change Type Journal Article
  Year (down) 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3599-3609  
  Keywords Adaptation, Physiological; *Climate Change; Computer Simulation; Europe; Flowers/*physiology; *Hot Temperature; *Quantitative Trait, Heritable; Time Factors; Triticum/*growth & development/*physiology; Downscaling; LARS-WG weather generator; Sirius wheat model.; heat stress; ideotype design; impact assessment  
  Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4578  
Permanent link to this record
 

 
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. url  doi
openurl 
  Title Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
  Year (down) 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 207 Issue Pages 94-106  
  Keywords Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time  
  Abstract The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4553  
Permanent link to this record
 

 
Author Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N. url  doi
openurl 
  Title Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage Type Journal Article
  Year (down) 2014 Publication Journal of Animal Science Abbreviated Journal J. Anim. Sci.  
  Volume 92 Issue 11 Pages 5134-5141  
  Keywords Abattoirs/*statistics & numerical data; Animals; *Data Interpretation, Statistical; Humidity/adverse effects; Light/adverse effects; *Mortality; Retrospective Studies; Seasons; Swine/*physiology; Temperature; Time Factors; Transportation/*statistics & numerical data; lairage; mortality; pigs; temperature-humidity index; transport  
  Abstract The study was based on data collected during 5 yr (2003-2007) and was aimed at assessing the effects of the month, slaughter house of destination (differing for stocking density, openings, brightness, and cooling device types), length of the journey, and temperature-humidity index (THI) on mortality of heavy slaughter pigs (approximately 160 kg live weight) during transport and lairage. Data were obtained from 24,098 journeys and 3,676,153 pigs transported from 1,618 farms to 3 slaughter houses. Individual shipments were the unit of observation. The terms dead on arrival (DOA) and dead in pen (DIP) refer to pigs that died during transport and in lairage at the abattoir before slaughtering, respectively. These 2 variables were assessed as the dependent counts in separate univariate Poisson regressions. The independent variables assessed univariately in each set of regressions were month of shipment, slaughter house of destination, time traveled, and each combination of the month with the time traveled. Two separate piecewise regressions were done. One used DOA counts within THI levels over pigs transported as a dependent ratio and the second used DIP counts within THI levels over pigs from a transport kept in lairage as a dependent ratio. The THI was the sole independent variable in each case. The month with the greatest frequency of deaths was July with a risk ratio of 1.22 (confidence interval: 1.06-1.36; P < 0.05) and 1.27 (confidence interval: 1.06-1.51; P < 0.05) for DOA and DIP, respectively. The lower mortality risk ratios for DOA and DIP were recorded for January and March (P < 0.05). The aggregated data of the summer (June, July, and August) versus non-summer (January, March, September, and November) months showed a greater risk of pigs dying during the hot season when considering both transport and lairage (P < 0.05). The mortality risk ratio of DIP was lower at the slaughter house with the lowest stocking density (0.64 m(2)/100 kg live weight), large open windows on the roof and sidewalls, low brightness (40 lx) lights, and high-pressure sprinklers as cooling devices. The mortality risk ratio of DOA increased significantly for journeys longer than 2 h, whereas no relationship was found between length of transport and DIP. The piecewise analysis pointed out that 78.5 and 73.6 THI were the thresholds above which the mortality rate increased significantly for DOA and DIP, respectively. These results may help the pig industry to improve the welfare of heavy slaughter pigs during transport and lairage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-3163 (Electronic) 0021-8812 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4641  
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
  Year (down) 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 3 Pages 255-272  
  Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe  
  Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 1573-1618 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4621  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. doi  openurl
  Title Adapting wheat in Europe for climate change Type Journal Article
  Year (down) 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.  
  Volume 59 Issue 3 Pages 245-256  
  Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype  
  Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-5210 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4543  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: