|   | 
Details
   web
Records
Author Schauberger, B.; Rolinski, S.; Müller, C.
Title A network-based approach for semi-quantitative knowledge mining and its application to yield variability Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 12 Pages 123001
Keywords (down) yield variability; crop models; interaction network; plant process; wheat; maize; rice; Global Food Security; Climate-Change; Crop Production; Stress Tolerance; Wheat Yields; Heat-Stress; Temperature Variability; Environmental-Factors; United-States; Elevated CO2
Abstract Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
Address 2017-04-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4942
Permanent link to this record
 

 
Author García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J.
Title Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 124 Issue 1-2 Pages 147-162
Keywords (down) winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth
Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 1573-1480 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4622
Permanent link to this record
 

 
Author Semenov, M.A.; Mitchell, R.A.C.; Whitmore, A.P.; Hawkesford, M.J.; Parry, M.A.J.; Shewry, P.R.
Title Shortcomings in wheat yield predictions Type Journal Article
Year 2012 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 2 Issue 6 Pages 380-382
Keywords (down) winter-wheat; elevated CO2; temperature; growth
Abstract Predictions of a 40–140% increase in wheat yield by 2050, reported in the UK Climate Change Risk Assessment, are based on a simplistic approach that ignores key factors affecting yields and hence are seriously misleading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Commentary
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4504
Permanent link to this record
 

 
Author Rodriguez, A.; Ruiz-Ramos, M.; Palosuo, T.; Carter, T.R.; Fronzek, S.; Lorite, I.J.; Ferrise, R.; Pirttioja, N.; Bindi, M.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hohn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P.
Title Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations Type Journal Article
Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 264 Issue Pages 351-362
Keywords (down) Wheat adaptation; Uncertainty; Climate change; Decision support; Response surface; Outcome confidence; Climate-Change Impacts; Response Surfaces; Wheat; Uncertainty; Yield; Simulation; 21St-Century; Productivity; Temperature; Projections
Abstract unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5214
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.
Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics
Volume 27 Issue 4 Pages 463-477
Keywords (down) water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil
Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4608
Permanent link to this record