|   | 
Details
   web
Records
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.
Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 12 Issue 5 Pages 054023
Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY
Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.
Address 2017-06-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5035
Permanent link to this record
 

 
Author Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.A.; Schleussner, C.-F.; Ruane, A.; Gessner, U.; Hoogenboom, G.; Boote, K.; Shelia, V.; Saeed, F.; Wisser, D.; Hadir, S.; Laux, P.; Gaiser, T.
Title Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna Type Journal Article
Year 2018 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 13 Issue 3 Pages 034014
Keywords 1.5 degrees C; West Africa; food security; climate change; DSSAT; SIMPLACE; Climate-Change Impacts; Sub-Saharan Africa; Food Security; Heat-Stress; Canopy Temperature; Paris Agreement; Pearl-Millet; Maize Yield; Crop; Yields; Model; MACSUR or FACCE acknowledged.
Abstract To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5196
Permanent link to this record
 

 
Author Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U.
Title Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship Type Journal Article
Year 2014 Publication Animal Abbreviated Journal Animal
Volume 8 Issue 4 Pages 667-674
Keywords Animal Husbandry/*methods; Animals; Cattle/*physiology; Cell Count/veterinary; Dairying; Female; Hot Temperature; Humidity; Italy; Lactation/*physiology; Milk/cytology/*physiology; Retrospective Studies; Seasons
Abstract A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature-humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054 ± 183 655, 3.73% ± 0.35% and 3.30% ± 0.15%, respectively), and August presented higher values of SCC (369 503 ± 228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1751-7311 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4618
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Uncertainty in simulating wheat yields under climate change Type Journal Article
Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 3 Issue 9 Pages 827-832
Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1758-678x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4599
Permanent link to this record
 

 
Author Semenov, M.A.; Mitchell, R.A.C.; Whitmore, A.P.; Hawkesford, M.J.; Parry, M.A.J.; Shewry, P.R.
Title Shortcomings in wheat yield predictions Type Journal Article
Year 2012 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 2 Issue 6 Pages 380-382
Keywords winter-wheat; elevated CO2; temperature; growth
Abstract Predictions of a 40–140% increase in wheat yield by 2050, reported in the UK Climate Change Risk Assessment, are based on a simplistic approach that ignores key factors affecting yields and hence are seriously misleading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1758-678x 1758-6798 ISBN Medium Commentary
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4504
Permanent link to this record