|   | 
Details
   web
Records
Author Calanca, P.; Semenov, M.A.
Title Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database Type Journal Article
Year 2013 Publication Theoretical and Applied Climatology Abbreviated Journal Theor. Appl. Climatol.
Volume 113 Issue 3-4 Pages 445-455
Keywords stochastic weather generators; regional climate; lars-wg; daily; precipitation; models; simulation; europe; temperature; variability; heatwaves
Abstract We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-798x 1434-4483 ISBN Medium Article
Area Expedition (up) Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4484
Permanent link to this record
 

 
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P.; Young, D.
Title Regrowth simulation of the perennial grass timothy Type Journal Article
Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 232 Issue Pages 64-77
Keywords biomass; carbohydrate; leaf area index; n uptake; reserve-dependent growth; temperature; nutritive-value; carbohydrate reserves; phleum-pratense; catimo model; leaf-area; nitrogen-fertilization; spring harvest; meadow fescue; tall fescue; growth
Abstract Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition (up) Conference
Notes CropM, LiveM Approved no
Call Number MA @ admin @ Serial 4473
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordonez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F.
Title Modelling the impact of heat stress on maize yield formation Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 198 Issue Pages 226-237
Keywords Heat stress; Maize; Zea mays (L); Crop models; HIGH-TEMPERATURE STRESS; KERNEL NUMBER; CROP GROWTH; GRAIN-YIELD; SIMULATION; CLIMATE; HYBRIDS; SET; VALIDATION; COMPONENTS
Abstract The frequency and intensity of extreme high temperature events are expected to increase with climate change. Higher temperatures near anthesis have a large negative effect on maize (Zea mays, L.) grain yield. While crop growth models are commonly used to assess climate change impacts on maize and other crops, it is only recently that they have accounted for such heat stress effects, despite limited field data availability for model evaluation. There is also increasing awareness but limited testing of the importance of canopy temperature as compared to air temperature for heat stress impact simulations. In this study, four independent irrigated field trials with controlled heating imposed using polyethylene shelters were used to develop and evaluate a heat stress response function in the crop modeling framework SIMPLACE, in which the Lintul5 crop model was combined with a canopy temperature model. A dataset from Argentina with the temperate hybrid Nidera AX 842 MG (RM 119) was used to develop a yield reduction function based on accumulated hourly stress thermal time above a critical temperature of 34 degrees C. A second dataset from Spain with a FAO 700 cultivar was used to evaluate the model with daily weather inputs in two sets of simulations. The first was used to calibrate SIMPLACE for conditions with no heat stress, and the second was used to evaluate SIMPLACE under conditions of heat stress using the reduction factor obtained with the Argentine dataset. Both sets of simulations were conducted twice; with the heat stress function alternatively driven with air and simulated canopy temperature. Grain yield simulated under heat stress conditions improved when canopy temperature was used instead of air temperature (RMSE equal to 175 and 309 g m(-2), respectively). For the irrigated and high radiative conditions, raising the critical threshold temperature for heat stress to 39 degrees C improved yield simulation using air temperature (RMSE: 221 gm(-2)) without the need to simulate canopy temperature (RMSE: 175 gm(-2)). However, this approach of adjusting thresholds is only likely to work in environments where climatic variables and the level of soil water deficit are constant, such as irrigated conditions and are not appropriate for rainfed production conditions. (C) 2016 Elsevier B.V. All rights reserved.
Address 2016-11-17
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290, 1872-6852 ISBN Medium Article
Area Expedition (up) Conference
Notes ft_macsur, CropM Approved no
Call Number MA @ admin @ Serial 4880
Permanent link to this record
 

 
Author Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P.
Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
Year 2017 Publication Catena Abbreviated Journal Catena
Volume 151 Issue Pages 202-212
Keywords Biomass; C turnover; GHG emission; Microbial activity; Soil moisture; Organic-Matter Dynamics; Co2 Efflux; N Fertilization; Forage Systems; Winter-Wheat; Nitrogen; Temperature; Forest; Water; Root
Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg(-1)). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 121,1111 1 111(-2) s(-1). On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (-2.9 t ha(-1)). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization. (C) 2016 Elsevier B.V. All rights reserved.
Address 2017-03-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-8162 ISBN Medium Article
Area Expedition (up) Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4939
Permanent link to this record
 

 
Author Schauberger, B.; Rolinski, S.; Müller, C.
Title A network-based approach for semi-quantitative knowledge mining and its application to yield variability Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 12 Pages 123001
Keywords yield variability; crop models; interaction network; plant process; wheat; maize; rice; Global Food Security; Climate-Change; Crop Production; Stress Tolerance; Wheat Yields; Heat-Stress; Temperature Variability; Environmental-Factors; United-States; Elevated CO2
Abstract Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
Address 2017-04-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Review
Area Expedition (up) Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4942
Permanent link to this record