toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kersebaum, K.C.; Nendel, C. url  doi
openurl 
  Title Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 22-32  
  Keywords climate change; co2 effect; crop yield; water use efficiency; groundwater; modeling nitrogen dynamics; winter-wheat; carbon-dioxide; assessing uncertainties; agricultural crops; potential impact; enrichment face; elevated co2; soil; simulation  
  Abstract Impact of climate change on crop growth, groundwater recharge and nitrogen leaching in winter wheat production in Germany was assessed using the agro-ecosystem model HERMES with a downscaled (WETTREG) climate change scenario A1B from the ECHAM5 global circulation model. Three alternative algorithms describing the impact of atmospheric CO2 concentration on crop growth (a simple Farquhar-type algorithm, a combined light-use efficiency – maximum assimilation approach and a simple scaling of the maximum assimilation rate) in combination with a Penman-Monteith approach which includes a simple stomata conduction model for evapotranspiration under changing CO2 concentrations were compared within the framework of the HERMES model. The effect of differences in regional climate change, site conditions and different CO2 algorithms on winter wheat yield, groundwater recharge and nitrogen leaching was assessed in 22 regional simulation case studies across Germany. Results indicate that the effects of climate change on wheat production will vary across Germany due to different regional expressions of climate change projection. Predicted yield changes between the reference period (1961-1990) and a future period (2021-2050) range from -0.4 t ha(-1), -0.8 t ha(-1) and -0.6 t ha(-1) at sites in southern Germany to +0.8 t ha(-1), +0.6 t ha(-1) and +0.8 t ha(-1) at coastal regions for the three CO2 algorithms, respectively. On average across all regions, a relative yield change of +0.9%, +3.0%, and +6.0%, respectively, was predicted for Germany. In contrast, a decrease of -11.6% was predicted without the consideration of a CO2 effect. However, simulated yield changes differed even within regions as site conditions had a strong influence on crop growth. Particularly, groundwater-affected sites showed a lower vulnerability to increasing drought risk. Groundwater recharge was estimated to change correspondingly to changes in precipitation. The consideration of the CO2 effect on transpiration in the model led to a prediction of higher rates of annual deep percolation (+16 mm on average across all sites), which was due to higher water-use efficiency of the crops. In contrast to groundwater recharge, simulated nitrogen leaching varied with the choice of the photosynthesis algorithm, predicting a slight reduction in most of the areas. The results underline the necessity of high-resolution data for model-based regional climate change impact assessment and development of adaptation measures. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4527  
Permanent link to this record
 

 
Author (up) Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
 

 
Author (up) Korhonen, P.; Palosuo, T.; Persson, T.; Höglind, M.; Jego, G.; Van Oijen, M.; Gustavsson, A.-M.; Belanger, G.; Virkajärvi, P. doi  openurl
  Title Modelling grass yields in northern climates – a comparison of three growth models for timothy Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 224 Issue Pages 37-47  
  Keywords Forage grass; Model comparison; Timothy; Uncertainty; Yield; Nutritive-Value; Catimo Model; Nitrogen Balances; Simulation; Regrowth; Wheat; Stics; Dynamics; Harvest; Water  
  Abstract During the past few years, several studies have compared the performance of crop simulation models to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have been conducted for grasses. We compared the predictions for timothy grass (Phleum pratertse L.) yields for first and second cuts along with the dynamics of above-ground biomass for the grass simulation models BASGRA and CATIMO, and the soil -crop model STICS. The models were calibrated and evaluated using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the calibration methods was small. The results indicate that detailed soil process descriptions improved the overall model performance and the model responses to management, such as nitrogen applications. The results also suggest that taking the genetic variability into account between cultivars of timothy grass also improves the yield estimates. Calibrations using both spring and summer growth data simultaneously revealed that processes determining the growth in these two periods require further attention in model development.  
  Address 2018-07-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5206  
Permanent link to this record
 

 
Author (up) Lardy, R.; Bellocchi, G.; Martin, R. url  doi
openurl 
  Title Vuln-Indices: Software to assess vulnerability to climate change Type Journal Article
  Year 2015 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture  
  Volume 114 Issue Pages 53-57  
  Keywords climate change; Java; vulnerability indices; pasture simulation-model; integrated assessment; environmental-change; change impacts; system  
  Abstract Vuln-Indices Java-based software was developed on concepts of vulnerability to climate change of agro-ecological systems. It implements the calculation of vulnerability indices on series of state variables for assessments at both site and region levels. The tool is useful because synthetic indices help capturing complex processes and prove effective to identify the factors responsible for vulnerability and their relative importance. It is suggested that the tool may be plausible for use with stakeholders to disseminate information of climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1699 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4648  
Permanent link to this record
 

 
Author (up) Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Mueller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; Ahmed, M.; Balkovic, J.; Basso, B.; Biernath, C.; Bindi, M.; Cammarano, D.; De Sanctis, G.; Dumont, B.; Espadafor, M.; Rezaei, E.E.; Ferrise, R.; Garcia-Vila, M.; Gayler, S.; Gao, Y.; Horan, H.; Hoogenboom, G.; Izaurralde, R.C.; Jones, C.D.; Kassie, B.T.; Kersebaum, K.C.; Klein, C.; Koehler, A.-K.; Maiorano, A.; Minoli, S.; San Martin, M.M.; Kumar, S.N.; Nendel, C.; O’Leary, G.J.; Palosuo, T.; Priesack, E.; Ripoche, D.; Roetter, R.P.; Semenov, M.A.; Stockle, C.; Streck, T.; Supit, I.; Tao, F.; Van der Velde, M.; Wallach, D.; Wang, E.; Webber, H.; Wolf, J.; Xiao, L.; Zhang, Z.; Zhao, Z.; Zhu, Y.; Asseng, S. doi  openurl
  Title Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming Type Journal Article
  Year 2019 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 25 Issue 4 Pages 1428-1444  
  Keywords 1.5 degrees C warming; climate change; extreme low yields; food security; model ensemble; wheat production; Climate-Change; Crop Yield; Impacts; Co2; Adaptation; Responses; Models; Agriculture; Simulation; Growth  
  Abstract Efforts to limit global warming to below 2 degrees C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2 degrees C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0 degrees C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 degrees C scenario and -2.4% to 10.5% under the 2.0 degrees C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2 degrees C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5219  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: