toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J. url  doi
openurl 
  Title Uncertainty in simulating wheat yields under climate change Type Journal Article
  Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 3 Issue 9 Pages 827-832  
  Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts  
  Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4599  
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S. doi  openurl
  Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
  Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science  
  Volume 62 Issue Pages 166-180  
  Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale  
  Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0906-4702, 1651-1972 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4591  
Permanent link to this record
 

 
Author Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; Sieber, S.; Stachow, U.; Starick, A.; Wieland, R.; Wurbs, A.; Zander, P. url  doi
openurl 
  Title Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany Type Journal Article
  Year 2015 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 48 Issue Pages 505-517  
  Keywords scenarios; impact assessment; agricultural intensification; land use change; irrigation; bioenergy; social and environmental indicators; climate-change; landscape; model  
  Abstract Decisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government. The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5 million tons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials. In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4561  
Permanent link to this record
 

 
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. url  doi
openurl 
  Title Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 207 Issue Pages 94-106  
  Keywords Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time  
  Abstract The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4553  
Permanent link to this record
 

 
Author Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. url  doi
openurl 
  Title Adverse weather conditions for European wheat production will become more frequent with climate change Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 4 Issue 7 Pages 637-643  
  Keywords scenarios; increase; models; variability; responses; extremes; impacts; shifts  
  Abstract Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x 1758-6798 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: