|   | 
Details
   web
Records
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title (down) The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change
Volume 18 Issue 3 Pages 337-359
Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge
Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1381-2386 1573-1596 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4613
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title (down) Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 16 Issue 4 Pages 361-384
Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios
Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4519
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E.
Title (down) Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 46 Issue Pages 75-90
Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water
Abstract Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4675
Permanent link to this record
 

 
Author Sollitto, D.; De Benedetto, D.; Castrignanò, A.; Crescimanno, G.; Provenzano, G.; Ventrella, D.
Title (down) Spatial data fusion and analysis for soil characterization: a case study in a coastal basin of south-western Sicily (southern Italy) Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 7 Issue 1 Pages 4
Keywords salinization risk; soil retention curve; geostatistics; factor Kriging; intrinsic random funciton
Abstract Salinization is one of the most serious problems confronting sustainable agriculture in semi-arid and arid regions. Accurate mapping of soil salinization and the associated risk represent a fundamental step in planning agricultural and remediation activities. Geostatistical analysis is very useful for soil quality assessment because it makes it possible to determine the spatial relationships between selected variables and to produce synthetic maps of spatial variation. The main objective of this paper was to map the soil salinization risk in the Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy), using multivariate geostatistical techniques and a set of topographical, physical and soil hydraulic properties. Elevation data were collected from existing topographic maps and analysed preliminarily to improve the estimate precision of sparsely sampled primary variables. For interpolation multi-collocated cokriging was applied to the dataset, including textural and hydraulic properties and electrical conductivity measurements carried out on 128 collected soil samples, using elevation data as auxiliary variable. Spatial dependence among elevation and physical soil properties was explored with factorial kriging analysis (FKA) that could isolate and display the sources of variation acting at different spatial scales. FKA isolated significant regionalised factors which give a concise description of the complex soil physical variability at the different selected spatial scales. These factors mapped, allowed the delineation of zones at different salinisation risk to be managed separately to control and prevent salinization risk. The proposed methodology could be a valid support for land use and soil remediation planning at regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 1125-4718 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4595
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Virdis, S.G.P.; Tidore, C.; Pasqui, M.; Roggero, P.P.
Title (down) Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 143 Issue Pages 205-216
Keywords climate variability; socio-cognitive learning process; adaptation strategies; mediterranean agricultural systems; agricultural land-use; adaptive capacity; farming systems; variability; knowledge; risk; drought; africa; future; rain
Abstract Perception not only shapes knowledge but knowledge also shapes perception. Humans adapt to the natural world through a process of learning in which they interpret their sensory impressions in order to give meaning to their environment and act accordingly. In this research, we examined how farmers’ decision making is shaped in the context of changing climate. Using empirical data (face-to-face semi-structured interviews and questionnaires) on four Mediterranean farming systems from a case study located in Oristano (Sardinia, Italy) we sought to understand farmers’ perception of climate change and their behaviors in adjustment of farming practices. We found different perceptions among farmer groups were mainly associated with the different socio-cultural and institutional settings and perceived relationships between climate factors and impacts on each farming systems. The research findings on different perceptions among farmer groups can help to understand farmers’ current choices and attitudes of adaptation for supporting the development of appropriate adaptation strategies. In addition, the knowledge of socio-cultural and economic factors that lead to biases in climate perceptions can help to integrate climate communication into adaptation research for making sense of climate impacts and responses at farm level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4707
Permanent link to this record