toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 4 Pages 045004  
  Keywords (up) climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4649  
Permanent link to this record
 

 
Author Graß, R.; Thies, B.; Kersebaum, K.-C.; Wachendorf, M. url  doi
openurl 
  Title Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 1-10  
  Keywords (up) Climate change; Double cropping system; Biomass yield; Sowing and; harvesting dates; mean-square error; nitrogen dynamics; wheat production; carbon-dioxide; soil; water; management; sunflower; responses; crops  
  Abstract Regionalized model calculations showed increased rainfall and temperatures in winter and less precipitation and higher temperatures in summer due to climate change effects in the future for numerous countries in the northern hemisphere. Furthermore, model simulations predicted enhanced weather variability with an increased risk of yield losses and reduced yield stability. Recently, double cropping systems (DCS) were suggested as an environmental friendly and productive adaptation strategy with increased yield stability. This paper reviews the potential benefit of four DCS (rye (Secale cereale L.) as first crop and maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum sudanense L. x Sorghum bicolor L.) and sudan grass (S. sudanense L.) as second crops) in comparison with four conventional sole cropping systems (SCS) (maize, sunflower, sorghum and sudan grass) with regard to dry matter (DM) yield and soil water under conditions of climate change. We used the agro-ecosystem model HERMES for simulating these variables until the year 2100. The investigated crops sunflower, sorghum and sudan grass were parameterised first for HERMES achieving a satisfying performance. Results showed always higher DM yields per year of DCS compared with SCS. This was mainly caused by yield increases of the first crop winter rye harvested at the stage of milk ripeness. As a winter hardy crop, rye will benefit from increased precipitation and higher temperatures during winter months as well as from extended growth periods with an earlier onset in spring and an increase of growing days. Furthermore, rye is able to use the increased winter humidity for its spring growth in an efficient way. By contrast, model simulations showed that summer crops will be affected by reduced precipitation and higher temperatures during summer month for periods from 2050 onwards with the consequence of reduced yields. This yield reduction was found for all summer crops both in conventional sole crop and in DCS. Preponed harvesting of first crop winter rye as a consequence of earlier onset of growth period in spring under prospective climatic conditions lead to yield decrease, which could not be equalised by preponed sowing of second crops and extension of their growth period. Hence, total annual yield of both crops together decreased. The modification of sowing and harvesting dates as an adaptation strategy requires further research with the use of more holistic simulation models. To summarize, DCS may provide a promising adaptation strategy to effects of climate change with a substantial stabilisation of crop yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4659  
Permanent link to this record
 

 
Author Conradt, T.; Gornott, C.; Wechsung, F. url  doi
openurl 
  Title Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 216 Issue Pages 68-81  
  Keywords (up) cluster analysis; crop yield estimation; germany; multivariate regression; silage maize; winter wheat; climate-change; canadian prairies; crop yield; temperature; responses; environments; variability; cultivar; china  
  Abstract Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4709  
Permanent link to this record
 

 
Author Himanen, S.J.; Ketoja, E.; Hakala, K.; Rötter, R.P.; Salo, T.; Kahiluoto, H. doi  openurl
  Title Cultivar diversity has great potential to increase yield for feed barley Type Journal Article
  Year 2013 Publication Agronomy for Sustainable Development Abbreviated Journal Agron. Sust. Developm.  
  Volume 33 Issue 3 Pages 519-530  
  Keywords (up) Crop cultivar; Diversity; Environmental responses; Regional yields; Yield security  
  Abstract This study shows an average yield increase of 415–1,338 kg ha−1 per unit increase of the Shannon diversity index for feed barley cultivar use. There is a global quest to increase food production sustainably. Therefore, judicious farmer choices such as selection of crop cultivars are increasingly important. Cultivar diversity is limited and, as a consequence, corresponding crop yields are highly impacted by local weather variations and global climate change. Actually, there is little knowledge on the relationships between yields of regional crops and cultivar diversity, that is evenness and richness in cultivar use. Here, we hypothesized that higher cultivar diversity is related to higher regional yield. We also assumed that the diversity-yield relationship depends on weather during the growing season. Our data were based on farm yield surveys of feed and malting barley, Hordeum vulgare L.; spring wheat, Triticum aestivum L.; and spring turnip rape, Brassica rapa L. ssp. oleifera, from 1998 to 2009, representing about 4,500–5,500 farms annually. We modeled the relationships between regional yields and Shannon diversity indices in high-yielding (south-west) and low-yielding (central-east) regions of Finland using linear mixed models. Our results show that an increase of Shannon diversity index increases yield of feed barley. Feed barley had also the greatest cultivar diversity. In contrast, an average yield decrease of 1,052 kg ha−1 per unit increase in Shannon index was found for spring rape in 2006 and 2008. Our findings show that cultivar diversification has potential to raise mean regional yield of feed barley. Increasing cultivar diversity thus offers a novel, sustainability-favoring means to promote higher yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1774-0746 1773-0155 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4603  
Permanent link to this record
 

 
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F. url  doi
openurl 
  Title ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 61 Issue Pages 35-48  
  Keywords (up) crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses  
  Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4511  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: