|   | 
Details
   web
Records
Author Daccache, A.; Ciurana, J.S.; Diaz, J.A.R.; Knox, J.W.
Title Water and energy footprint of irrigated agriculture in the Mediterranean region Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 12 Pages 124014
Keywords food security; CO2 emissions; nexus; water productivity; water resources; climate-change; southern spain; management; impacts; deficit; grids
Abstract Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m(3) kg(-1)) and energy (CO2 kg(-1)) productivity and identify vulnerable areas or `hotspots’. For a selected key crops in the region, irrigation accounts for 61 km(3) yr(-1) of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 tMm(-3) and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km(3) of water but would correspondingly increase CO2 emissions by around +135\%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km(3) yr(-1) (+137\%) whilst CO2 emissions would rise by +270\%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4747
Permanent link to this record
 

 
Author Ghaley, B.B.; Sandhu, H.S.; Porter, J.R.
Title Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 4 Pages e0123869
Keywords Carbon/*metabolism; *Conservation of Natural Resources/economics; Denmark; *Ecosystem; Fagus/metabolism; Forests; Nitrogen/*metabolism; Oxygen/*metabolism; Soil
Abstract Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM Approved no
Call Number MA @ admin @ Serial 4692
Permanent link to this record
 

 
Author Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D.
Title Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades Type Journal Article
Year 2016 Publication Scientific Reports Abbreviated Journal Scientific Reports
Volume 6 Issue Pages 33704
Keywords water-resources; groundwater recharge; stream-flow; surface-energy; china; runoff; impact; evapotranspiration; cover; availability; Science & Technology – Other Topics
Abstract The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.
Address 2016-10-18
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4668
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Dalla Marta, A.
Title Consumptive use of green and blue water for winter durum wheat cultivated in Southern Italy Type Journal Article
Year 2015 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology
Volume 20 Issue 1 Pages 33-44
Keywords irrigation; water productivity; model simulation; climate change; climate-change scenarios; air co2 enrichment; impact; footprint; irrigation; simulation; yield; agriculture; variability; resources
Abstract In this study at the regional scale, the model DSSAT CERES-Wheat was applied in order to simulate the cultivation of winter durum wheat (WW) and to estimate the green water (GW) and the blue water (BW) through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years for three scenarios including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5 degrees C. The GW and BW contribution for evapo transpiration requirement is presented and analyzed on a distributed scale related to the Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. The GW component was dominant compared to BW, covering almost 90% of the ETc of WW Under a Baseline scenario the weight BW was 11%, slightly increased in the future scenarios. GW appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, and to the hydraulic characteristics of soil for each calculation unit. After considering the effects of climate change on irrigation requirement of WW we carried out an example of analysis in order to verify the economic benefit of supplemental irrigation for WW cultivation. The probability that irrigation generates a negative or zero income ranged between 55 and 60% and climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4653
Permanent link to this record
 

 
Author Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; Ban, T.; Vikram, P.
Title Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3477-3486
Keywords Adaptation, Physiological/*genetics; Breeding/*methods; *Climate Change; Conservation of Natural Resources; *Genetic Variation; Triticum/*genetics; Bottleneck; conservation; diversity; drought; durum wheat; heat
Abstract Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference (up)
Notes CropM Approved no
Call Number MA @ admin @ Serial 4566
Permanent link to this record