toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. url  doi
openurl 
  Title Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 188-198  
  Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage  
  Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4770  
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. url  doi
openurl 
  Title Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
  Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 208 Issue Pages 12-20  
  Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification  
  Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4715  
Permanent link to this record
 

 
Author Kim, Y.; Seo, Y.; Kraus, D.; Klatt, S.; Haas, E.; Tenhunen, J.; Kiese, R. doi  openurl
  Title Estimation and mitigation of N₂O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea Type Journal Article
  Year 2015 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 529 Issue Pages 40-53  
  Keywords Agriculture; Air Pollutants/*analysis; Air Pollution/prevention & control/*statistics & numerical data; Crops, Agricultural; *Environmental Monitoring; Fertilizers; Nitrogen Dioxide/*analysis; Republic of Korea; LandscapeDNDC; Mitigation strategies; N2O; Nitrate leaching; Water quality  
  Abstract Considering intensive agricultural management practices and environmental conditions, the LandscapeDNDC model was applied for simulation of yields, N2O emission and nitrate leaching from major upland crops and temperate deciduous forest of the Haean catchment, South Korea. Fertilization rates were high (up to 314 kg N ha(-1) year(-1)) and resulted in simulated direct N2O emissions from potato, radish, soybean and cabbage fields of 1.9 and 2.1 kg N ha(-1) year(-1) in 2009 and 2010, respectively. Nitrate leaching was identified as the dominant pathway of N losses in the Haean catchment with mean annual rates of 112.2 and 125.4 kg N ha(-1) year(-1), causing threats to water quality and leading to substantial indirect N2O emissions of 0.84 and 0.94 kg N ha(-1) year(-1) in 2009 and 2010 as estimates by applying the IPCC EF5. Simulated N2O emissions from temperate deciduous forest were low (approx. 0.50 kg N ha(-1) year(-1)) and predicted nitrate leaching rates were even negligible (≤0.01 kg N ha(-1) year(-1)). On catchment scale more than 50% of the total N2O emissions and up to 75% of nitrate leaching originated from fertilized upland fields, only covering 24% of the catchment area. Taking into account area coverage of simulated upland crops and other land uses these numbers agree well with nitrate loads calculated from discharge and concentration measurements at the catchment outlet. The change of current agricultural management practices showed a high potential of reducing N2O emission and nitrate leaching while maintaining current crop yields. Reducing (39%) and splitting N fertilizer application into 3 times was most effective and lead to about 54% and 77% reducing of N2O emission and nitrate leaching from the Haean catchment, the latter potentially contributing to improved water quality in the Soyang River Dam, which is the major source of drinking water for metropolitan residents.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4684  
Permanent link to this record
 

 
Author Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F. url  doi
openurl 
  Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 43 Issue Pages 108-118  
  Keywords durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water  
  Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4596  
Permanent link to this record
 

 
Author García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J. doi  openurl
  Title Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 124 Issue 1-2 Pages 147-162  
  Keywords winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth  
  Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4622  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: