toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Roetter, R.P. doi  openurl
  Title Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2017 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 239 Issue Pages 1-14  
  Keywords Agriculture, Climate change, Crop yield, Impact and adaptation, Heat stress, Phenology; Climate-Change; Winter-Wheat; North China; Triticum-Aestivum; Crop; Production; Grain-Growth; Impacts; Trends; Heat; Management  
  Abstract Our understanding of climate impacts and adaptations on crop growth and productivity can be accelerated by analyzing historical data over the past few decades. We used crop trial and climate data from 1981 to 2009 at 34 national agro-meteorological stations in the Huang-Huai-Hai Plain (HHHP) of China to investigate the impacts of climate factors during different growth stages on the growth and yields of winter wheat, accounting for the adaptations such as shifts in sowing dates, cultivars, and agronomic management. Maximum (T-max) and minimum temperature (T-min) during the growth period of winter wheat increased significantly, by 0.4 and 0.6 degrees C/decade, respectively, from 1981 to 2009, while solar radiation decreased significantly by 0.2 MJ/m(2)/day and precipitation did not change significantly. The trends in climate shifted wheat phenology significantly at 21 stations and affected wheat yields significantly at five stations. The impacts of T-max and T-min differed in different growth stages of winter wheat. Across the stations, during 1981-2009, wheat yields increased on average by 14.5% with increasing trends in T-min over the whole growth period, which reduced frost damage, however, decreased by 3.0% with the decreasing trends in solar radiation. Trends in Tmax and precipitation had comparatively smaller impacts on wheat yields. From 1981 to 2009, climate trends were associated with a <= 30% (or <= 1.0% per year) wheat yield increase at 23 stations in eastern and southern parts of HHHP; however with a <= 30% (or <= 1.0% per year) reduction at 11 other stations, mainly in western part of HHHP. We also found that wheat reproductive growth duration increased due to shifts in cultivars and flowering date, and the duration was significantly and positively correlated with wheat yield. This study highlights the different impacts of T-max and T-min in different growth stages of winter wheat, as well as the importance of management (e.g. shift of sowing date) and cultivars shift in adapting to climate change in the major wheat production region. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-06-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4962  
Permanent link to this record
 

 
Author (up) Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 44-52  
  Keywords adaptation; crop production; cultivars; extreme climate; impacts; phenology; high-temperature stress; climate-change; winter-wheat; spring wheat; crop yields; day length; trends; variability; senescence; phenology  
  Abstract Heat stress impacts on crop growth and yield have been investigated by controlled-environment experiments, however little is known about the impacts under field conditions at large spatial and temporal scales, particularly in a setting with farmers’ autonomous adaptations. Here, using detailed experiment Observations at 34 national agricultural meteorological stations spanning from 1981 to 2009 in the Huang-Huai-Hai Plain (HHHP) of China, we investigated the changes in climate and heat stress during wheat reproductive growing period (from heading to maturity) and the impacts of climate change and heat stress on reproductive growing duration (RGD) and yield in a setting with farmers’ autonomous adaptations. We found that RGD and growing degree days above 0 degrees C (GDD) from heading to maturity increased, which increased yield by similar to 14.85%, although heat stress had negative impacts on RGD and yield. During 1981-2009, high temperature (>34 degrees C) degree days (HDD) increased in the northern part, however decreased in the middle and southern parts of HHHP due to advances in heading and maturity dates. Change in HDD, together with increase in GDD and decrease in solar radiation (SRD), jointly increased wheat yield in the northern and middle parts but reduced it in the southern part of HHHP. During the study period, increase in GDD and decrease in SRD had larger impacts on yield than change in HDD. However, with climate warming of 2 degrees C, damage of heat stress on yield may offset a large portion of the benefits from increases in RGD and GDD, and eventually result in net negative impacts on yield in the northern part of HHHP. Our study showed that shifts in cultivars and wheat production system dynamics in the past three decades reduced heat stress impacts in the HHHP. The insights into crop response and adaptation to climate change and climate extremes provide excellent evidences and basis for improving climate change impact study and designing adaptation measures for the future. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4743  
Permanent link to this record
 

 
Author (up) van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F. url  doi
openurl 
  Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 220 Issue Pages 101-115  
  Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil  
  Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4673  
Permanent link to this record
 

 
Author (up) Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. url  doi
openurl 
  Title Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa Type Journal Article
  Year 2013 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 23 Issue 1 Pages 130-143  
  Keywords multiple cropping; sequential cropping systems; crop modelling; agricultural management; adaptation options; global vegetation model; future food-production; rainy-season; west-africa; agriculture; yield; maize; soil; variability; heat  
  Abstract Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4823  
Permanent link to this record
 

 
Author (up) Webber, H.; Ewert, F.; Kimball, B.A.; Siebert, S.; White, J.W.; Wall, G.W.; Ottman, M.J.; Trawally, D.N.A.; Gaiser, T. url  doi
openurl 
  Title Simulating canopy temperature for modelling heat stress in cereals Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 77 Issue Pages 143-155  
  Keywords canopy temperature; heat stress; cereals; crop models; profile relationships; crop production; climate-change; spring wheat; field plots; growth; maize; water; yields; variability  
  Abstract Crop models must be improved to account for the effects of heat stress events on crop yields. To date, most approaches in crop models use air temperature to define heat stress intensity as the cumulative sum of thermal times (TT) above a high temperature threshold during a sensitive period for yield formation. However, observational evidence indicates that crop canopy temperature better explains yield reductions associated with high temperature events than air temperature does. This study presents a canopy level energy balance using Monin ObukhovSimilarity Theory (MOST) with simplifications about the canopy resistance that render it suitable for application in crop models and other models of the plant environment. The model is evaluated for a uniform irrigated wheat canopy in Arizona and rainfed maize in Burkina Faso. No single variable regression relationships for key explanatory variables were found that were consistent across sowing dates to explain the deviation of canopy temperature from air temperature. Finally, thermal times determined with simulated canopy temperatures were able to reproduce thermal times calculated with observed canopy temperature, whereas those determined with air temperatures were not. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4730  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: