toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Meyer, P. doi  openurl
  Title Epigenetic variation and environmental change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3541-3548  
  Keywords DNA Methylation/genetics; DNA Transposable Elements/genetics; *Environment; *Epigenesis, Genetic; Plants/genetics; Stress, Physiological/genetics; Adaptation; DNA methylation; epigenetics; stress response  
  Abstract Environmental conditions can change the activity of plant genes via epigenetic effects that alter the competence of genetic information to be expressed. This may provide a powerful strategy for plants to adapt to environmental change. However, as epigenetic changes do not modify DNA sequences and are therefore reversible, only those epi-mutations that are transmitted through the germline can be expected to contribute to a long-term adaptive response. The major challenge for the investigation of epigenetic adaptation theories is therefore to identify genomic loci that undergo epigenetic changes in response to environmental conditions, which alter their expression in a heritable way and which improve the plant’s ability to adapt to the inducing conditions. This review focuses on the role of DNA methylation as a prominent epigenetic mark that controls chromatin conformation, and on its potential in mediating expression changes in response to environmental signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431 (Electronic) 0022-0957 (Linking) ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4569  
Permanent link to this record
 

 
Author (up) Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G. url  doi
openurl 
  Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
  Year 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 81 Issue Pages 1-10  
  Keywords stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants  
  Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4797  
Permanent link to this record
 

 
Author (up) Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A. url  doi
openurl 
  Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
  Year 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 288 Issue Pages 103-111  
  Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield  
  Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4806  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: